Abstract:The upper-mid band (7-24 GHz), designated as Frequency Range 3 (FR3), has emerged as a definitive ``golden band" for 6G networks, strategically balancing the wide coverage of sub-6 GHz with the high capacity of mmWave. To compensate for the severe path loss inherent to this band, the deployment of Extremely Large Aperture Arrays (ELAA) is indispensable. However, the legacy 3GPP TR 38.901 channel model faces critical validity challenges when applied to 6G FR3, stemming from both the distinct propagation characteristics of this frequency band and the fundamental physical paradigm shift induced by ELAA. In response, 3GPP Release 19 (Rel-19) has validated the model through extensive new measurements and introduced significant enhancements. This tutorial provides a comprehensive guide to the Rel-19 channel model for 6G FR3, bridging the gap between standardization specifications and practical simulation implementation. First, we provide a high-level overview of the fundamental principles of the 3GPP channel modeling framework. Second, we detail the specific enhancements and modifications introduced in Rel-19, including the rationale behind the new Suburban Macro (SMa) scenario, the mathematical modeling of ELAA-driven features such as near-field and spatial non-stationarity, and the recalibration of large-scale parameters. Overall, this tutorial serves as an essential guide for researchers and engineers to master the latest 3GPP channel modeling methodology, laying a solid foundation for the accurate design and performance evaluation of future 6G FR3 networks.
Abstract:In this paper, we study robust beamforming design for near-field physical-layer-security (PLS) systems, where a base station (BS) equipped with an extremely large-scale array (XL-array) serves multiple near-field legitimate users (Bobs) in the presence of multiple near-field eavesdroppers (Eves). Unlike existing works that mostly assume perfect channel state information (CSI) or location information of Eves, we consider a more practical and challenging scenario, where the locations of Bobs are perfectly known, while only imperfect location information of Eves is available at the BS. We first formulate a robust optimization problem to maximize the sum-rate of Bobs while guaranteeing a worst-case limit on the eavesdropping rate under location uncertainty. By transforming Cartesian position errors into the polar domain, we reveal an important near-field angular-error amplification effect: for the same location error, the closer the Eve, the larger the angle error, severely degrading the performance of conventional robust beamforming methods based on imperfect channel state information. To address this issue, we first establish the conditions for which the first-order Taylor approximation of the near-field channel steering vector under location uncertainty is largely accurate. Then, we propose a two-stage robust beamforming method, which first partitions the uncertainty region into multiple fan-shaped sub-regions, followed by the second stage to formulate and solve a refined linear-matrix-inequality (LMI)-based robust beamforming optimization problem. In addition, the proposed method is further extended to scenarios with multiple Bobs and multiple Eves. Finally, numerical results validate that the proposed method achieves a superior trade-off between rate performance and secrecy robustness, hence significantly outperforming existing benchmarks under Eve location uncertainty.
Abstract:There has been a growing trend in employing generative artificial intelligence (GenAI) techniques to support learning. Moreover, scholars have reached a consensus on the critical role of self-regulated learning (SRL) in ensuring learning effectiveness within GenAI-assisted learning environments, making it essential to capture students' dynamic SRL patterns. In this study, we extracted students' interaction patterns with GenAI from trace data as they completed a problem-solving task within a GenAI-assisted intelligent tutoring system. Students' purpose of using GenAI was also analyzed from the perspective of information processing, i.e., information acquisition and information transformation. Using sequential and clustering analysis, this study classified participants into two groups based on their SRL sequences. These two groups differed in the frequency and temporal characteristics of GenAI use. In addition, most students used GenAI for information acquisition rather than information transformation, while the correlation between the purpose of using GenAI and learning performance was not statistically significant. Our findings inform both pedagogical design and the development of GenAI-assisted learning environments.
Abstract:Integrated Sensing and Communication (ISAC) has been identified as a key 6G application by ITU and 3GPP. A realistic, standard-compatible channel model is essential for ISAC system design. To characterize the impact of Sensing Targets (STs), 3GPP defines ISAC channel as a combination of target and background channels, comprising multipath components related to STs and those originating solely from the environment, respectively. Although the background channel does not carry direct ST information, its accurate modeling is critical for evaluating sensing performance, especially in complex environments. Existing communication standards characterize propagation between separated transmitter (Tx) and receiver (Rx). However, modeling background channels in the ISAC monostatic mode, where the Tx and Rx are co-located, remains a pressing challenge. In this paper, we firstly conduct ISAC monostatic background channel measurements for an indoor scenario at 28 GHz. Realistic channel parameters are extracted, revealing pronounced single-hop propagation and discrete multipath distribution. Inspired by these properties, a novel stochastic model is proposed to characterizing the ISAC monostatic background channel as the superposition of sub-channels between the monostatic Tx&Rx and multiple communication Rx-like Reference Points (RPs). This model is compatible with standardizations, and a 3GPP-extended implementation framework is introduced. Finally, a genetic algorithm-based method is proposed to extract the optimal number and placement of multi-RPs. The optimization approach and modeling framework are validated by comparing measured and simulated channel parameters. Results demonstrate that the proposed model effectively captures monostatic background channel characteristics, addresses a critical gap in ISAC channel modeling, and supports 6G standardization.




Abstract:Building facades represent a significant untapped resource for solar energy generation in dense urban environments, yet assessing their photovoltaic (PV) potential remains challenging due to complex geometries and semantic com ponents. This study introduces SF-SPA (Semantic Facade Solar-PV Assessment), an automated framework that transforms street-view photographs into quantitative PV deployment assessments. The approach combines com puter vision and artificial intelligence techniques to address three key challenges: perspective distortion correction, semantic understanding of facade elements, and spatial reasoning for PV layout optimization. Our four-stage pipeline processes images through geometric rectification, zero-shot semantic segmentation, Large Language Model (LLM) guided spatial reasoning, and energy simulation. Validation across 80 buildings in four countries demonstrates ro bust performance with mean area estimation errors of 6.2% ± 2.8% compared to expert annotations. The auto mated assessment requires approximately 100 seconds per building, a substantial gain in efficiency over manual methods. Simulated energy yield predictions confirm the method's reliability and applicability for regional poten tial studies, urban energy planning, and building-integrated photovoltaic (BIPV) deployment. Code is available at: https:github.com/CodeAXu/Solar-PV-Installation
Abstract:Infrared small target detection (ISTD) is one of the key techniques in image processing. Although deep unfolding networks (DUNs) have demonstrated promising performance in ISTD due to their model interpretability and data adaptability, existing methods still face significant challenges in parameter lightweightness and noise robustness. In this regard, we propose a highly lightweight framework based on robust principal component analysis (RPCA) called L-RPCANet. Technically, a hierarchical bottleneck structure is constructed to reduce and increase the channel dimension in the single-channel input infrared image to achieve channel-wise feature refinement, with bottleneck layers designed in each module to extract features. This reduces the number of channels in feature extraction and improves the lightweightness of network parameters. Furthermore, a noise reduction module is embedded to enhance the robustness against complex noise. In addition, squeeze-and-excitation networks (SENets) are leveraged as a channel attention mechanism to focus on the varying importance of different features across channels, thereby achieving excellent performance while maintaining both lightweightness and robustness. Extensive experiments on the ISTD datasets validate the superiority of our proposed method compared with state-of-the-art methods covering RPCANet, DRPCANet, and RPCANet++. The code will be available at https://github.com/xianchaoxiu/L-RPCANet.




Abstract:To meet the robust and high-speed communication requirements of the sixth-generation (6G) mobile communication system in complex scenarios, sensing- and artificial intelligence (AI)-based digital twin channel (DTC) techniques become a promising approach to reduce system overhead. In this paper, we propose an environment-specific channel subspace basis (EB)-aided partial-to-whole channel state information (CSI) prediction method (EB-P2WCP) for realizing DTC-enabled low-overhead channel prediction. Specifically, EB is utilized to characterize the static properties of the electromagnetic environment, which is extracted from the digital twin map, serving as environmental information prior to the prediction task. Then, we fuse EB with real-time estimated local CSI to predict the entire spatial-frequency domain channel for both the present and future time instances. Hence, an EB-based partial-to-whole CSI prediction network (EB-P2WNet) is designed to achieve a robust channel prediction scheme in various complex scenarios. Simulation results indicate that incorporating EB provides significant benefits under low signal-to-noise ratio and pilot ratio conditions, achieving a reduction of up to 50% in pilot overhead. Additionally, the proposed method maintains robustness against multi-user interference, tolerating 3-meter localization errors with only a 0.5 dB NMSE increase, and predicts CSI for the next channel coherent time within 1.3 milliseconds.
Abstract:Beam prediction is an effective approach to reduce training overhead in massive multiple-input multiple-output (MIMO) systems. However, existing beam prediction models still exhibit limited generalization ability in diverse scenarios, which remains a critical challenge. In this paper, we propose MLM-BP, a beam prediction framework based on the multi-modal large model released by DeepSeek, with full consideration of multi-modal environmental information. Specifically, the distribution of scatterers that impact the optimal beam is captured by the sensing devices. Then positions are tokenized to generate text-based representations, and multi-view images are processed by an image encoder, which is fine-tuned with low-rank adaptation (LoRA), to extract environmental embeddings. Finally, these embeddings are fed into the large model, and an output projection module is designed to determine the optimal beam index. Simulation results show that MLM-BP achieves 98.1% Top-1 accuracy on the simulation dataset. Additionally, it demonstrates few-shot generalization on a real-world dataset, achieving 72.7% Top-1 accuracy and 92.4% Top-3 accuracy with only 30% of the dataset, outperforming the existing small models by over 15%.
Abstract:Remote sensing image (RSI) denoising is an important topic in the field of remote sensing. Despite the impressive denoising performance of RSI denoising methods, most current deep learning-based approaches function as black boxes and lack integration with physical information models, leading to limited interpretability. Additionally, many methods may struggle with insufficient attention to non-local self-similarity in RSI and require tedious tuning of regularization parameters to achieve optimal performance, particularly in conventional iterative optimization approaches. In this paper, we first propose a novel RSI denoising method named sparse tensor-aided representation network (STAR-Net), which leverages a low-rank prior to effectively capture the non-local self-similarity within RSI. Furthermore, we extend STAR-Net to a sparse variant called STAR-Net-S to deal with the interference caused by non-Gaussian noise in original RSI for the purpose of improving robustness. Different from conventional iterative optimization, we develop an alternating direction method of multipliers (ADMM)-guided deep unrolling network, in which all regularization parameters can be automatically learned, thus inheriting the advantages of both model-based and deep learning-based approaches and successfully addressing the above-mentioned shortcomings. Comprehensive experiments on synthetic and real-world datasets demonstrate that STAR-Net and STAR-Net-S outperform state-of-the-art RSI denoising methods.




Abstract:Accurate radar cross section (RCS) modeling is crucial for characterizing target scattering and improving the precision of Integrated Sensing and Communication (ISAC) channel modeling. Existing RCS models are typically designed for specific target types, leading to increased complexity and lack of generalization. This makes it difficult to standardize RCS models for 3GPP ISAC channels, which need to account for multiple typical target types simultaneously. Furthermore, 3GPP models must support both system-level and link-level simulations, requiring the integration of large-scale and small-scale scattering characteristics. To address these challenges, this paper proposes a unified RCS modeling framework that consolidates these two aspects. The model decomposes RCS into three components: (1) a large-scale power factor representing overall scattering strength, (2) a small-scale angular-dependent component describing directional scattering, and (3) a random component accounting for variations across target instances. We validate the model through mono-static RCS measurements for UAV, human, and vehicle targets across five frequency bands. The results demonstrate that the proposed model can effectively capture RCS variations for different target types. Finally, the model is incorporated into an ISAC channel simulation platform to assess the impact of target RCS characteristics on path loss, delay spread, and angular spread, providing valuable insights for future ISAC system design.