Abstract:Manipulating transparent objects presents significant challenges due to the complexities introduced by their reflection and refraction properties, which considerably hinder the accurate estimation of their 3D shapes. To address these challenges, we propose a single-view RGB-D-based depth completion framework, TransDiff, that leverages the Denoising Diffusion Probabilistic Models(DDPM) to achieve material-agnostic object grasping in desktop. Specifically, we leverage features extracted from RGB images, including semantic segmentation, edge maps, and normal maps, to condition the depth map generation process. Our method learns an iterative denoising process that transforms a random depth distribution into a depth map, guided by initially refined depth information, ensuring more accurate depth estimation in scenarios involving transparent objects. Additionally, we propose a novel training method to better align the noisy depth and RGB image features, which are used as conditions to refine depth estimation step by step. Finally, we utilized an improved inference process to accelerate the denoising procedure. Through comprehensive experimental validation, we demonstrate that our method significantly outperforms the baselines in both synthetic and real-world benchmarks with acceptable inference time. The demo of our method can be found on https://wang-haoxiao.github.io/TransDiff/
Abstract:Repositioning drug-disease relationships has always been a hot field of research. However, actual cases of biologically validated drug relocation remain very limited, and existing models have not yet fully utilized the structural information of the drug. Furthermore, most repositioning models are only used to complete the relationship matrix, and their practicality is poor when dealing with drug cold start problems. This paper proposes a structure-enhanced multimodal relationship prediction model (SMRP). SMPR is based on the SMILE structure of the drug, using the Mol2VEC method to generate drug embedded representations, and learn disease embedded representations through heterogeneous network graph neural networks. Ultimately, a drug-disease relationship matrix is constructed. In addition, to reduce the difficulty of users' use, SMPR also provides a cold start interface based on structural similarity based on reposition results to simply and quickly predict drug-related diseases. The repositioning ability and cold start capability of the model are verified from multiple perspectives. While the AUC and ACUPR scores of repositioning reach 99% and 61% respectively, the AUC of cold start achieve 80%. In particular, the cold start Recall indicator can reach more than 70%, which means that SMPR is more sensitive to positive samples. Finally, case analysis is used to verify the practical value of the model and visual analysis directly demonstrates the improvement of the structure to the model. For quick use, we also provide local deployment of the model and package it into an executable program.
Abstract:Integrated Sensing and Communication (ISAC), as a fundamental technology of 6G, empowers Vehicle-to-Everything (V2X) systems with enhanced sensing capabilities. One of its promising applications is the reliance on constructed maps for vehicle positioning. Traditional positioning methods primarily rely on Line-of-Sight (LOS), but in urban vehicular scenarios, obstructions often result in predominantly Non-Line-of-Sight (NLOS) conditions. Existing research indicates that NLOS paths, characterized by one-bounce reflection on building walls with determined delay and angle, can support sensing and positioning. However, experimental validation remains insufficient. To address this gap, channel measurements are conducted in an urban street to explore the existence of strong reflected paths in the presence of a vehicle target. The results show significant power contribution from NLOS paths, with large Environmental Objects (EOs) playing a key role in shaping NLOS propagation. Then, a novel model for EO reflection is proposed to extend the Geometry-Based Stochastic Model (GBSM) for ISAC channel standardization. Simulation results validate the model's ability to capture EO's power and position characteristics, showing that higher EO-reflected power and closer distance to Rx reduce Delay Spread (DS), which is more favorable for positioning. This model provides theoretical guidance and empirical support for ISAC positioning algorithms and system design in vehicular scenarios.
Abstract:In the realm of autonomous driving, conventional approaches for vehicle perception and decision-making primarily rely on sensor input and rule-based algorithms. However, these methodologies often suffer from lack of interpretability and robustness, particularly in intricate traffic scenarios. To tackle this challenge, we propose a novel brain-inspired driving (BID) framework. Diverging from traditional methods, our approach harnesses brain-inspired perception technology to achieve more efficient and robust environmental perception. Additionally, it employs brain-inspired decision-making techniques to facilitate intelligent decision-making. The experimental results show that the performance has been significantly improved across various autonomous driving tasks and achieved the end-to-end autopilot successfully. This contribution not only advances interpretability and robustness but also offers fancy insights and methodologies for further advancing autonomous driving technology.
Abstract:Drawing inspiration from neurosciences, artificial neural networks (ANNs) have evolved from shallow architectures to highly complex, deep structures, yielding exceptional performance in auditory recognition tasks. However, traditional ANNs often struggle to align with brain regions due to their excessive depth and lack of biologically realistic features, like recurrent connection. To address this, a brain-like auditory network (BAN) is introduced, which incorporates four neuroanatomically mapped areas and recurrent connection, guided by a novel metric called the brain-like auditory score (BAS). BAS serves as a benchmark for evaluating the similarity between BAN and human auditory recognition pathway. We further propose that specific areas in the cerebral cortex, mainly the middle and medial superior temporal (T2/T3) areas, correspond to the designed network structure, drawing parallels with the brain's auditory perception pathway. Our findings suggest that the neuroanatomical similarity in the cortex and auditory classification abilities of the ANN are well-aligned. In addition to delivering excellent performance on a music genre classification task, the BAN demonstrates a high BAS score. In conclusion, this study presents BAN as a recurrent, brain-inspired ANN, representing the first model that mirrors the cortical pathway of auditory recognition.
Abstract:As a virtual, synchronized replica of physical network, the digital twin network (DTN) is envisioned to sense, predict, optimize and manage the intricate wireless technologies and architectures brought by 6G. Given that the properties of wireless channel fundamentally determine the system performances from the physical layer to network layer, it is a critical prerequisite that the invisible wireless channel in physical world be accurately and efficiently twinned. To support 6G DTN, this paper first proposes a multi-task adaptive ray-tracing platform for 6G (MART-6G) to generate the channel with 6G features, specially designed for DTN online real-time and offline high-accurate tasks. Specifically, the MART-6G platform comprises three core modules, i.e., environment twin module to enhance the sensing ability of dynamic environment; RT engine module to incorporate the main algorithms of propagations, accelerations, calibrations, 6G-specific new features; and channel twin module to generate channel multipath, parameters, statistical distributions, and corresponding three-dimensional (3D) environment information. Moreover, MART-6G is tailored for DTN tasks through the adaptive selection of proper sensing methods, antenna and material libraries, propagation models and calibration strategy, etc. To validate MART-6G performance, we present two real-world case studies to demonstrate the accuracy, efficiency and generality in both offline coverage prediction and online real-time channel prediction. Finally, some open issues and challenges are outlined to further support future diverse DTN tasks.
Abstract:Advancements in emerging technologies, e.g., reconfigurable intelligent surfaces and holographic MIMO (HMIMO), facilitate unprecedented manipulation of electromagnetic (EM) waves, significantly enhancing the performance of wireless communication systems. To accurately characterize the achievable performance limits of these systems, it is crucial to develop a universal EM-compliant channel model. This paper addresses this necessity by proposing a comprehensive EM channel model tailored for realistic multi-path environments, accounting for the combined effects of antenna array configurations and propagation conditions in HMIMO communications. Both polarization phenomena and spatial correlation are incorporated into this probabilistic channel model. Additionally, physical constraints of antenna configurations, such as mutual coupling effects and energy consumption, are integrated into the channel modeling framework. Simulation results validate the effectiveness of the proposed probabilistic channel model, indicating that traditional Rician and Rayleigh fading models cannot accurately depict the channel characteristics and underestimate the channel capacity. More importantly, the proposed channel model outperforms free-space Green's functions in accurately depicting both near-field gain and multi-path effects in radiative near-field regions. These gains are much more evident in tri-polarized systems, highlighting the necessity of polarization interference elimination techniques. Moreover, the theoretical analysis accurately verifies that capacity decreases with expanding communication regions of two-user communications.
Abstract:While attention-based approaches have shown considerable progress in enhancing image fusion and addressing the challenges posed by long-range feature dependencies, their efficacy in capturing local features is compromised by the lack of diverse receptive field extraction techniques. To overcome the shortcomings of existing fusion methods in extracting multi-scale local features and preserving global features, this paper proposes a novel cross-modal image fusion approach based on a multi-scale convolutional neural network with attention Transformer (MATCNN). MATCNN utilizes the multi-scale fusion module (MSFM) to extract local features at different scales and employs the global feature extraction module (GFEM) to extract global features. Combining the two reduces the loss of detail features and improves the ability of global feature representation. Simultaneously, an information mask is used to label pertinent details within the images, aiming to enhance the proportion of preserving significant information in infrared images and background textures in visible images in fused images. Subsequently, a novel optimization algorithm is developed, leveraging the mask to guide feature extraction through the integration of content, structural similarity index measurement, and global feature loss. Quantitative and qualitative evaluations are conducted across various datasets, revealing that MATCNN effectively highlights infrared salient targets, preserves additional details in visible images, and achieves better fusion results for cross-modal images. The code of MATCNN will be available at https://github.com/zhang3849/MATCNN.git.
Abstract:With the increasing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and communication for sixth-generation (6G) network is emerging as a revolutionary architecture. This paper presents a comprehensive overview of AI and communication for 6G networks, emphasizing their foundational principles, inherent challenges, and future research opportunities. We commence with a retrospective analysis of AI and the evolution of large-scale AI models, underscoring their pivotal roles in shaping contemporary communication technologies. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The initial stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The subsequent stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, including digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services and support application scenarios like immersive communication and intelligent industrial robots. Specifically, we have defined the quality of AI service, which refers to the measurement framework system of AI services within the network. In addition to these developmental stages, we thoroughly examine the standardization processes pertinent to AI in network contexts, highlighting key milestones and ongoing efforts. Finally, we outline promising future research opportunities that could drive the evolution and refinement of AI and communication for 6G, positioning them as a cornerstone of next-generation communication infrastructure.
Abstract:The channel is one of the five critical components of a communication system, and its ergodic capacity is based on all realizations of statistic channel model. This statistical paradigm has successfully guided the design of mobile communication systems from 1G to 5G. However, this approach relies on offline channel measurements in specific environments, and the system passively adapts to new environments, resulting in deviation from the optimal performance. With the pursuit of higher capacity and data rate of 6G, especially facing the ubiquitous environments, there is an urgent need for a new paradigm to combat the randomness of channel, i.e., more proactive and online manner. Motivated by this, we propose an environment intelligence communication (EIC) based on wireless environmental information theory (WEIT) for 6G. The proposed EIC architecture is composed of three steps: Firstly, wireless environmental information (WEI) is acquired using sensing techniques. Then, leveraging WEI and channel data, AI techniques are employed to predict channel fading, thereby mitigating channel uncertainty. Thirdly, the communication system autonomously determines the optimal air-interface transmission strategy based on real-time channel predictions, enabling intelligent interaction with the physical environment. To make this attractive paradigm shift from theory to practice, we answer three key problems to establish WEIT for the first time. How should WEI be defined? Can it be quantified? Does it hold the same properties as statistical communication information? Furthermore, EIC aided by WEI (EIC-WEI) is validated across multiple air-interface tasks, including CSI prediction, beam prediction, and radio resource management. Simulation results demonstrate that the proposed EIC-WEI significantly outperforms the statistical paradigm in decreasing overhead and performance optimization.