Abstract:The channel is one of the five critical components of a communication system, and its ergodic capacity is based on all realizations of statistic channel model. This statistical paradigm has successfully guided the design of mobile communication systems from 1G to 5G. However, this approach relies on offline channel measurements in specific environments, and the system passively adapts to new environments, resulting in deviation from the optimal performance. With the pursuit of higher capacity and data rate of 6G, especially facing the ubiquitous environments, there is an urgent need for a new paradigm to combat the randomness of channel, i.e., more proactive and online manner. Motivated by this, we propose an environment intelligence communication (EIC) based on wireless environmental information theory (WEIT) for 6G. The proposed EIC architecture is composed of three steps: Firstly, wireless environmental information (WEI) is acquired using sensing techniques. Then, leveraging WEI and channel data, AI techniques are employed to predict channel fading, thereby mitigating channel uncertainty. Thirdly, the communication system autonomously determines the optimal air-interface transmission strategy based on real-time channel predictions, enabling intelligent interaction with the physical environment. To make this attractive paradigm shift from theory to practice, we answer three key problems to establish WEIT for the first time. How should WEI be defined? Can it be quantified? Does it hold the same properties as statistical communication information? Furthermore, EIC aided by WEI (EIC-WEI) is validated across multiple air-interface tasks, including CSI prediction, beam prediction, and radio resource management. Simulation results demonstrate that the proposed EIC-WEI significantly outperforms the statistical paradigm in decreasing overhead and performance optimization.
Abstract:Reconfigurable Intelligent Surface (RIS) is considered as a promising technology for 6G due to its ability to actively modify the electromagnetic propagation environment. Accurate channel modeling is essential for the design and evaluation of RIS assisted communication systems. Most current research models the RIS channel as a cascade of Tx-RIS and RIS-Rx sub-channels. However, most validation efforts regarding this assumption focus on large-scale path loss. To further explore this, in this paper, we derive and extend a convolution expression of RIS cascaded channel model based on the previously proposed Geometry-based Stochastic Model (GBSM)-based RIS cascaded channels. This model follows the 3GPP standard framework and leverages parameters such as angles, delays, and path powers defined in the GBSM model to more accurately reflect the smallscale characteristics of RIS multipath cascades. To verify the accuracy of this model, we conduct measurements of the TxRIS-Rx channel, Tx-RIS, and RIS-Rx sub-channels in a factory environment at 6.9 GHz, using the measured data to demonstrate the models validity and applicability in real-world scenarios. Validation with measured data shows that the proposed model accurately describes the characteristics of the RIS cascaded channel in terms of delay, angle, and power in complex multipath environments, providing important references for the design and deployment of RIS systems.
Abstract:As Extremely Large-Scale Multiple-Input-Multiple-Output (XL-MIMO) technology advances and frequency band rises, the near-field effects in communication are intensifying. A concise and accurate near-field XL-MIMO channel model serves as the cornerstone for investigating the near-field effects. However, existing angular domain XL-MIMO channel models under near-field conditions require non-closed-form wave-number domain integrals for computation, which is complicated. To obtain a more succinct channel model, this paper introduces a closed-form approximate expression based on the principle of stationary phase. It was subsequently shown that when the scatterer distance is larger than the array aperture, the closed-form model can be further simplified as a trapezoidal spectrum. We validate the accuracy of the proposed approximation through simulations of power angular spectrum similarity. The results indicate that the proposed approximation can accurately approximate the near-field angular domain channel within the effective Rayleigh distance.
Abstract:With the development of sixth generation (6G) networks toward digitalization and intelligentization of communications, rapid and precise channel prediction is crucial for the network potential release. Interestingly, a dynamic ray tracing (DRT) approach for channel prediction has recently been proposed, which utilizes the results of traditional RT to extrapolate the multipath geometry evolution. However, both the priori environmental data and the regularity in multipath evolution can be further utilized. In this work, an enhanced-dynamic ray tracing (E-DRT) algorithm architecture based on multipath bidirectional extrapolation has been proposed. In terms of accuracy, all available environment information is utilized to predict the birth and death processes of multipath components (MPCs) through bidirectional geometry extrapolation. In terms of efficiency, bidirectional electric field extrapolation is employed based on the evolution regularity of the MPCs' electric field. The results in a Vehicle-to-Vehicle (V2V) scenario show that E-DRT improves the accuracy of the channel prediction from 68.3% to 94.8% while reducing the runtime by 7.2% compared to DRT.