Abstract:The channel is one of the five critical components of a communication system, and its ergodic capacity is based on all realizations of statistic channel model. This statistical paradigm has successfully guided the design of mobile communication systems from 1G to 5G. However, this approach relies on offline channel measurements in specific environments, and the system passively adapts to new environments, resulting in deviation from the optimal performance. With the pursuit of higher capacity and data rate of 6G, especially facing the ubiquitous environments, there is an urgent need for a new paradigm to combat the randomness of channel, i.e., more proactive and online manner. Motivated by this, we propose an environment intelligence communication (EIC) based on wireless environmental information theory (WEIT) for 6G. The proposed EIC architecture is composed of three steps: Firstly, wireless environmental information (WEI) is acquired using sensing techniques. Then, leveraging WEI and channel data, AI techniques are employed to predict channel fading, thereby mitigating channel uncertainty. Thirdly, the communication system autonomously determines the optimal air-interface transmission strategy based on real-time channel predictions, enabling intelligent interaction with the physical environment. To make this attractive paradigm shift from theory to practice, we answer three key problems to establish WEIT for the first time. How should WEI be defined? Can it be quantified? Does it hold the same properties as statistical communication information? Furthermore, EIC aided by WEI (EIC-WEI) is validated across multiple air-interface tasks, including CSI prediction, beam prediction, and radio resource management. Simulation results demonstrate that the proposed EIC-WEI significantly outperforms the statistical paradigm in decreasing overhead and performance optimization.
Abstract:Compared to traditional intelligent reflecting surfaces(IRS), aerial IRS (AIRS) has unique advantages, such as more flexible deployment and wider service coverage. However, modeling AIRS in the channel presents new challenges due to their mobility. In this paper, a three-dimensional (3D) wideband channel model for AIRS and IRS joint-assisted multiple-input multiple-output (MIMO) communication system is proposed, where considering the rotational degrees of freedom in three directions and the motion angles of AIRS in space. Based on the proposed model, the channel impulse response (CIR), correlation function, and channel capacity are derived, and several feasible joint phase shifts schemes for AIRS and IRS units are proposed. Simulation results show that the proposed model can capture the channel characteristics accurately, and the proposed phase shifts methods can effectively improve the channel statistical characteristics and increase the system capacity. Additionally, we observe that in certain scenarios, the paths involving the IRS and the line-of-sight (LoS) paths exhibit similar characteristics. These findings provide valuable insights for the future development of intelligent communication systems.