Abstract:Compared to traditional intelligent reflecting surfaces(IRS), aerial IRS (AIRS) has unique advantages, such as more flexible deployment and wider service coverage. However, modeling AIRS in the channel presents new challenges due to their mobility. In this paper, a three-dimensional (3D) wideband channel model for AIRS and IRS joint-assisted multiple-input multiple-output (MIMO) communication system is proposed, where considering the rotational degrees of freedom in three directions and the motion angles of AIRS in space. Based on the proposed model, the channel impulse response (CIR), correlation function, and channel capacity are derived, and several feasible joint phase shifts schemes for AIRS and IRS units are proposed. Simulation results show that the proposed model can capture the channel characteristics accurately, and the proposed phase shifts methods can effectively improve the channel statistical characteristics and increase the system capacity. Additionally, we observe that in certain scenarios, the paths involving the IRS and the line-of-sight (LoS) paths exhibit similar characteristics. These findings provide valuable insights for the future development of intelligent communication systems.
Abstract:Integrated sensing and communication (ISAC) will greatly enhance the efficiency of physical resource utilization. The design of ISAC signal based on the orthogonal frequency division multiplex (OFDM) signal is the mainstream. However, when detecting the long-range target, the delay of echo signal exceeds CP duration, which will result in inter-symbol interference (ISI) and inter-carrier interference (ICI), limiting the sensing range. Facing the above problem, we propose to increase useful signal power through coherent compensation and improve the signal to interference plus noise power ratio (SINR) of each OFDM block. Compared with the traditional 2D-FFT algorithm, the improvement of SINR of range-doppler map (RDM) is verified by simulation, which will expand the sensing range.