Abstract:The new mid-band (6-24 GHz) has attracted significant attention from both academia and industry, which is the spectrum with continuous bandwidth that combines the coverage benefits of low frequency with the capacity advantages of high frequency. Since outdoor environments represent the primary application scenario for mobile communications, this paper presents the first comprehensive review and summary of multi-scenario and multi-frequency channel characteristics based on extensive outdoor new mid-band channel measurement data, including UMa, UMi, and O2I. Specifically, a survey of the progress of the channel characteristics is presented, such as path loss, delay spread, angular spread, channel sparsity, capacity and near-field spatial non-stationary characteristics. Then, considering that satellite communication will be an important component of future communication systems, we examine the impact of clutter loss in air-ground communications. Our analysis of the frequency dependence of mid-band clutter loss suggests that its impact is not significant. Additionally, given that penetration loss is frequency-dependent, we summarize its variation within the FR3 band. Based on experimental results, comparisons with the standard model reveal that while the 3GPP TR 38.901 model remains a useful reference for penetration loss in wood and glass, it shows significant deviations for concrete and glass, indicating the need for further refinement. In summary, the findings of this survey provide both empirical data and theoretical support for the deployment of mid-band in future communication systems, as well as guidance for optimizing mid-band base station deployment in the outdoor environment. This survey offers the reference for improving standard models and advancing channel modeling.
Abstract:Existing works on machine learning (ML)-empowered wireless communication primarily focus on monolithic scenarios and single tasks. However, with the blooming growth of communication task classes coupled with various task requirements in future 6G systems, this working pattern is obviously unsustainable. Therefore, identifying a groundbreaking paradigm that enables a universal model to solve multiple tasks in the physical layer within diverse scenarios is crucial for future system evolution. This paper aims to fundamentally address the curse of ML model generalization across diverse scenarios and tasks by unleashing multi-modal feature integration capabilities in future systems. Given the universality of electromagnetic propagation theory, the communication process is determined by the scattering environment, which can be more comprehensively characterized by cross-modal perception, thus providing sufficient information for all communication tasks across varied environments. This fact motivates us to propose a transformative two-stage multi-modal pre-training and downstream task adaptation paradigm...
Abstract:In Amazon robotic warehouses, the destination-to-chute mapping problem is crucial for efficient package sorting. Often, however, this problem is complicated by uncertain and dynamic package induction rates, which can lead to increased package recirculation. To tackle this challenge, we introduce a Distributionally Robust Multi-Agent Reinforcement Learning (DRMARL) framework that learns a destination-to-chute mapping policy that is resilient to adversarial variations in induction rates. Specifically, DRMARL relies on group distributionally robust optimization (DRO) to learn a policy that performs well not only on average but also on each individual subpopulation of induction rates within the group that capture, for example, different seasonality or operation modes of the system. This approach is then combined with a novel contextual bandit-based predictor of the worst-case induction distribution for each state-action pair, significantly reducing the cost of exploration and thereby increasing the learning efficiency and scalability of our framework. Extensive simulations demonstrate that DRMARL achieves robust chute mapping in the presence of varying induction distributions, reducing package recirculation by an average of 80\% in the simulation scenario.
Abstract:As a virtual, synchronized replica of physical network, the digital twin network (DTN) is envisioned to sense, predict, optimize and manage the intricate wireless technologies and architectures brought by 6G. Given that the properties of wireless channel fundamentally determine the system performances from the physical layer to network layer, it is a critical prerequisite that the invisible wireless channel in physical world be accurately and efficiently twinned. To support 6G DTN, this paper first proposes a multi-task adaptive ray-tracing platform for 6G (MART-6G) to generate the channel with 6G features, specially designed for DTN online real-time and offline high-accurate tasks. Specifically, the MART-6G platform comprises three core modules, i.e., environment twin module to enhance the sensing ability of dynamic environment; RT engine module to incorporate the main algorithms of propagations, accelerations, calibrations, 6G-specific new features; and channel twin module to generate channel multipath, parameters, statistical distributions, and corresponding three-dimensional (3D) environment information. Moreover, MART-6G is tailored for DTN tasks through the adaptive selection of proper sensing methods, antenna and material libraries, propagation models and calibration strategy, etc. To validate MART-6G performance, we present two real-world case studies to demonstrate the accuracy, efficiency and generality in both offline coverage prediction and online real-time channel prediction. Finally, some open issues and challenges are outlined to further support future diverse DTN tasks.
Abstract:Cooperative-integrated sensing and communication (C-ISAC) networks have emerged as promising solutions for communication and target sensing. However, imperfect channel state information (CSI) estimation and time synchronization (TS) errors degrade performance, affecting communication and sensing accuracy. This paper addresses these challenges {by employing} {movable antennas} (MAs) to enhance C-ISAC robustness. We analyze the impact of CSI errors on achievable rates and introduce a hybrid Cramer-Rao lower bound (HCRLB) to evaluate the effect of TS errors on target localization accuracy. Based on these models, we derive the worst-case achievable rate and sensing precision under such errors. We optimize cooperative beamforming, {base station (BS)} selection factor and MA position to minimize power consumption while ensuring accuracy. {We then propose a} constrained deep reinforcement learning (C-DRL) approach to solve this non-convex optimization problem, using a modified deep deterministic policy gradient (DDPG) algorithm with a Wolpertinger architecture for efficient training under complex constraints. {Simulation results show that the proposed method significantly improves system robustness against CSI and TS errors, where robustness mean reliable data transmission under poor channel conditions.} These findings demonstrate the potential of MA technology to reduce power consumption in imperfect CSI and TS environments.
Abstract:Along with the proliferating research interest in Semantic Communication (SemCom), Joint Source Channel Coding (JSCC) has dominated the attention due to the widely assumed existence in efficiently delivering information semantics. %has emerged as a pivotal area of research, aiming to enhance the efficiency and reliability of information transmission through deep learning-based methods. Nevertheless, this paper challenges the conventional JSCC paradigm, and advocates for adoption of Separate Source Channel Coding (SSCC) to enjoy the underlying more degree of freedom for optimization. We demonstrate that SSCC, after leveraging the strengths of Large Language Model (LLM) for source coding and Error Correction Code Transformer (ECCT) complemented for channel decoding, offers superior performance over JSCC. Our proposed framework also effectively highlights the compatibility challenges between SemCom approaches and digital communication systems, particularly concerning the resource costs associated with the transmission of high precision floating point numbers. Through comprehensive evaluations, we establish that empowered by LLM-based compression and ECCT-enhanced error correction, SSCC remains a viable and effective solution for modern communication systems. In other words, separate source and channel coding is still what we need!
Abstract:With the increasing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and communication for sixth-generation (6G) network is emerging as a revolutionary architecture. This paper presents a comprehensive overview of AI and communication for 6G networks, emphasizing their foundational principles, inherent challenges, and future research opportunities. We commence with a retrospective analysis of AI and the evolution of large-scale AI models, underscoring their pivotal roles in shaping contemporary communication technologies. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The initial stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The subsequent stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, including digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services and support application scenarios like immersive communication and intelligent industrial robots. Specifically, we have defined the quality of AI service, which refers to the measurement framework system of AI services within the network. In addition to these developmental stages, we thoroughly examine the standardization processes pertinent to AI in network contexts, highlighting key milestones and ongoing efforts. Finally, we outline promising future research opportunities that could drive the evolution and refinement of AI and communication for 6G, positioning them as a cornerstone of next-generation communication infrastructure.
Abstract:The stability and reliability of wireless data transmission in vehicular networks face significant challenges due to the high dynamics of path loss caused by the complexity of rapidly changing environments. This paper proposes a multi-modal environmental sensing-based path loss prediction architecture (MES-PLA) for V2I communications. First, we establish a multi-modal environment data and channel joint acquisition platform to generate a spatio-temporally synchronized and aligned dataset of environmental and channel data. Then we designed a multi-modal feature extraction and fusion network (MFEF-Net) for multi-modal environmental sensing data. MFEF-Net extracts features from RGB images, point cloud data, and GPS information, and integrates them with an attention mechanism to effectively leverage the strengths of each modality. The simulation results demonstrate that the Root Mean Square Error (RMSE) of MES-PLA is 2.20 dB, indicating a notable improvement in prediction accuracy compared to single-modal sensing data input. Moreover, MES-PLA exhibits enhanced stability under varying illumination conditions compared to single-modal methods.
Abstract:As 6G research advances, the growing demand leads to the emergence of novel technologies such as Integrated Sensing and Communication (ISAC), new antenna arrays like Extremely Large MIMO (XL-MIMO) and Reconfigurable Intelligent Surfaces (RIS), along with multi-frequency bands (6-24 GHz, above 100 GHz). Standardized unified channel models are crucial for research and performance evaluation across generations of mobile communication, but the existing 5G 3GPP channel model based on geometry-based stochastic model (GBSM) requires further extension to accommodate these 6G technologies. In response to this need, this article first investigates six distinctive channel characteristics introduced by 6G techenologies, such as ISAC target RCS, sparsity in the new mid-band, and others. Subsequently, an extended GBSM (E-GBSM) is proposed, integrating these characteristics into a unified modeling framework. The proposed model not only accommodates 6G technologies with flexibility but also maintains backward compatibility with 5G, ensuring a smooth evolution between generations. Finally, the implementation process of the proposed model is detailed, with experiments and simulations validate its effectiveness and accuracy, providing support for 6G channel modeling standardization efforts.
Abstract:Terahertz (THz) integrated sensing and communication (ISAC) holds the potential to achieve high data rates and high-resolution sensing. Reconstructing the propagation environment is a vital step for THz ISAC, as it enhances the predictability of the communication channel to reduce communication overhead. In this letter, we propose an environment reconstruction methodology (ERM) merging reflectors of multi-targets based on THz single-sided channel small-scale characteristics. In this method, the inclination and position of tiny reflection faces of one single multi-path (MPC) are initially detected by double-triangle equations based on Snells law and geometry properties. Then, those reflection faces of multi-target MPCs, which are filtrated as available and one-order reflection MPCs, are globally merged to accurately reconstruct the entire propagation environment. The ERM is capable of operating with only small-scale parameters of receiving MPC. Subsequently, we validate our ERM through two experiments: bi-static ray-tracing simulations in an L-shaped room and channel measurements in an urban macrocellular (UMa) scenario in THz bands. The validation results demonstrate a small deviation of 0.03 m between the sensing outcomes and the predefined reflectors in the ray-tracing simulation and a small sensing root-mean-square error of 1.28 m and 0.45 m in line-of-sight and non-line-of-sight cases respectively based on channel measurements. Overall, this work is valuable for designing THz communication systems and facilitating the application of THz ISAC communication techniques.