Abstract:Existing works on machine learning (ML)-empowered wireless communication primarily focus on monolithic scenarios and single tasks. However, with the blooming growth of communication task classes coupled with various task requirements in future 6G systems, this working pattern is obviously unsustainable. Therefore, identifying a groundbreaking paradigm that enables a universal model to solve multiple tasks in the physical layer within diverse scenarios is crucial for future system evolution. This paper aims to fundamentally address the curse of ML model generalization across diverse scenarios and tasks by unleashing multi-modal feature integration capabilities in future systems. Given the universality of electromagnetic propagation theory, the communication process is determined by the scattering environment, which can be more comprehensively characterized by cross-modal perception, thus providing sufficient information for all communication tasks across varied environments. This fact motivates us to propose a transformative two-stage multi-modal pre-training and downstream task adaptation paradigm...
Abstract:The integrated sensing and communication (ISAC) has been envisioned as one representative usage scenario of sixth-generation (6G) network. However, the unprecedented characteristics of 6G, especially the doubly dispersive channel, make classical ISAC waveforms rather challenging to guarantee a desirable performance level. The recently proposed affine frequency division multiplexing (AFDM) can attain full diversity even under doubly dispersive effects, thus becoming a competitive candidate for next-generation ISAC waveforms. Relevant investigations are still at an early stage, which involve only straightforward design lacking explicit theoretical analysis. This paper provides an in-depth investigation on AFDM waveform design for ISAC applications. Specifically, the closed-form Cr\'{a}mer-Rao bounds of target detection for AFDM are derived, followed by a demonstration on its merits over existing counterparts. Furthermore, we formulate the ambiguity function of the pilot-assisted AFDM waveform for the first time, revealing conditions for stable sensing performance. To further enhance both the communication and sensing performance of the AFDM waveform, we propose a novel pilot design by exploiting the characteristics of AFDM signals. The proposed design is analytically validated to be capable of optimizing the ambiguity function property and channel estimation accuracy simultaneously as well as overcoming the sensing and channel estimation range limitation originated from the pilot spacing. Numerical results have verified the superiority of the proposed pilot design in terms of dual-functional performance.