Abstract:The widespread use of uncrewed aerial vehicles (UAVs) has propelled the development of advanced techniques on countering unauthorized UAV flights. However, the resistance of legal UAVs to illegal interference remains under-addressed. This paper proposes radiation pattern reconfigurable fluid antenna systems (RPR-FAS)-empowered interference-resilient UAV communication scheme. This scheme integrates the reconfigurable pixel antenna technology, which provides each antenna with an adjustable radiation pattern. Therefore, RPR-FAS can enhance the angular resolution of a UAV with a limited number of antennas, thereby improving spectral efficiency (SE) and interference resilience. Specifically, we first design dedicated radiation pattern adapted from 3GPP-TR-38.901, where the beam direction and half power beamwidth are tailored for UAV communications. Furthermore, we propose a low-storage-overhead orthogonal matching pursuit multiple measurement vectors algorithm, which accurately estimates the angle-of-arrival (AoA) of the communication link, even in the single antenna case. Particularly, by utilizing the Fourier transform to the radiation pattern gain matrix, we design a dimension-reduction technique to achieve 1--2 order-of-magnitude reduction in storage requirements. Meanwhile, we propose a maximum likelihood interference AoA estimation method based on the law of large numbers, so that the SE can be further improved. Finally, alternating optimization is employed to obtain the optimal uplink radiation pattern and combiner, while an exhaustive search is applied to determine the optimal downlink pattern, complemented by the water-filling algorithm for beamforming. Comprehensive simulations demonstrate that the proposed schemes outperform traditional methods in terms of angular sensing precision and spectral efficiency.
Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) systems, operating in the near-field region due to their massive antenna arrays, are a key enabler of next-generation wireless communications but face significant challenges in channel state information (CSI) feedback. Deep learning has emerged as a powerful tool by learning compact CSI representations for feedback. However, existing methods struggle to capture the intricate structure of near-field CSI while incurring prohibitive computational overhead on practical mobile devices. To overcome these limitations, we propose the Near-Field Efficient Feedback Transformer (NEFT) family for accurate and efficient near-field CSI feedback across diverse hardware platforms. Built on a hierarchical Vision Transformer backbone, NEFT is extended with lightweight variants to meet various deployment constraints: NEFT-Compact applies multi-level knowledge distillation (KD) to reduce complexity while maintaining accuracy, and NEFT-Hybrid and NEFT-Edge address encoder- and edge-constrained scenarios via attention-free encoding and KD. Extensive simulations show that NEFT achieves a 15--21 dB improvement in normalized mean-squared error (NMSE) over state-of-the-art methods, while NEFT-Compact and NEFT-Edge reduce total FLOPs by 25--36% with negligible accuracy loss. Moreover, NEFT-Hybrid lowers encoder-side complexity by up to 64%, enabling deployment in highly asymmetric device scenarios. These results establish NEFT as a practical and scalable solution for near-field CSI feedback in XL-MIMO systems.
Abstract:Wireless jamming identification, which detects and classifies electromagnetic jamming from non-cooperative devices, is crucial for emerging low-altitude wireless networks consisting of many drone terminals that are highly susceptible to electromagnetic jamming. However, jamming identification schemes adopting deep learning (DL) are vulnerable to attacks involving carefully crafted adversarial samples, resulting in inevitable robustness degradation. To address this issue, we propose a differential transformer framework for wireless jamming identification. Firstly, we introduce a differential transformer network in order to distinguish jamming signals, which overcomes the attention noise when compared with its traditional counterpart by performing self-attention operations in a differential manner. Secondly, we propose a randomized masking training strategy to improve network robustness, which leverages the patch partitioning mechanism inherent to transformer architectures in order to create parallel feature extraction branches. Each branch operates on a distinct, randomly masked subset of patches, which fundamentally constrains the propagation of adversarial perturbations across the network. Additionally, the ensemble effect generated by fusing predictions from these diverse branches demonstrates superior resilience against adversarial attacks. Finally, we introduce a novel consistent training framework that significantly enhances adversarial robustness through dualbranch regularization. Simulation results demonstrate that our proposed methodology is superior to existing methods in boosting robustness to adversarial samples.
Abstract:Frequency-domain channel extrapolation is effective in reducing pilot overhead for massive multiple-input multiple-output (MIMO) systems. Recently, Deep learning (DL) based channel extrapolator has become a promising candidate for modeling complex frequency-domain dependency. Nevertheless, current DL extrapolators fail to operate in unseen environments under distribution shift, which poses challenges for large-scale deployment. In this paper, environment generalizable learning for channel extrapolation is achieved by realizing distribution alignment from a physics perspective. Firstly, the distribution shift of wireless channels is rigorously analyzed, which comprises the distribution shift of multipath structure and single-path response. Secondly, a physics-based progressive distribution alignment strategy is proposed to address the distribution shift, which includes successive path-oriented design and path alignment. Path-oriented DL extrapolator decomposes multipath channel extrapolation into parallel extrapolations of the extracted path, which can mitigate the distribution shift of multipath structure. Path alignment is proposed to address the distribution shift of single-path response in path-oriented DL extrapolators, which eventually enables generalizable learning for channel extrapolation. In the simulation, distinct wireless environments are generated using the precise ray-tracing tool. Based on extensive evaluations, the proposed path-oriented DL extrapolator with path alignment can reduce extrapolation error by more than 6 dB in unseen environments compared to the state-of-the-arts.
Abstract:The integrated sensing and communication (ISAC) has been envisioned as one representative usage scenario of sixth-generation (6G) network. However, the unprecedented characteristics of 6G, especially the doubly dispersive channel, make classical ISAC waveforms rather challenging to guarantee a desirable performance level. The recently proposed affine frequency division multiplexing (AFDM) can attain full diversity even under doubly dispersive effects, thus becoming a competitive candidate for next-generation ISAC waveforms. Relevant investigations are still at an early stage, which involve only straightforward design lacking explicit theoretical analysis. This paper provides an in-depth investigation on AFDM waveform design for ISAC applications. Specifically, the closed-form Cr\'{a}mer-Rao bounds of target detection for AFDM are derived, followed by a demonstration on its merits over existing counterparts. Furthermore, we formulate the ambiguity function of the pilot-assisted AFDM waveform for the first time, revealing conditions for stable sensing performance. To further enhance both the communication and sensing performance of the AFDM waveform, we propose a novel pilot design by exploiting the characteristics of AFDM signals. The proposed design is analytically validated to be capable of optimizing the ambiguity function property and channel estimation accuracy simultaneously as well as overcoming the sensing and channel estimation range limitation originated from the pilot spacing. Numerical results have verified the superiority of the proposed pilot design in terms of dual-functional performance.
Abstract:Massive Multiple Input Multiple Output (MIMO) is critical for boosting 6G wireless network capacity. Nevertheless, high dimensional Channel State Information (CSI) acquisition becomes the bottleneck of 6G massive MIMO system. Recently, Channel Digital Twin (CDT), which replicates physical entities in wireless channels, has been proposed, providing site-specific prior knowledge for CSI acquisition. However, external devices (e.g., cameras and GPS devices) cannot always be integrated into existing communication systems, nor are they universally available across all scenarios. Moreover, the trained CDT model cannot be directly applied in new environments, which lacks environmental generalizability. To this end, Path Evolution Model (PEM) is proposed as an alternative CDT to reflect physical path evolutions from consecutive channel measurements. Compared to existing CDTs, PEM demonstrates virtues of full endogeneity, self-sustainability and environmental generalizability. Firstly, PEM only requires existing channel measurements, which is free of other hardware devices and can be readily deployed. Secondly, self-sustaining maintenance of PEM can be achieved in dynamic channel by progressive updates. Thirdly, environmental generalizability can greatly reduce deployment costs in dynamic environments. To facilitate the implementation of PEM, an intelligent and light-weighted operation framework is firstly designed. Then, the environmental generalizability of PEM is rigorously analyzed. Next, efficient learning approaches are proposed to reduce the amount of training data practically. Extensive simulation results reveal that PEM can simultaneously achieve high-precision and low-overhead CSI acquisition, which can serve as a fundamental CDT for 6G wireless networks.
Abstract:Current Type I and Type II codebooks in fifth generation (5G) wireless communications are limited in supporting the coexistence of far-field and near-field user equipments, as they are exclusively designed for far-field scenarios. To fill this knowledge gap and encourage relevant proposals by the 3rd Generation Partnership Project (3GPP), this article provides a novel codebook to facilitate a unified paradigm for the coexistence of far-field and near-field contexts. It ensures efficient precoding for all user equipments (UEs), while removing the need for the base station to identify whether one specific UE stays in either near-field or far-field regions. Additionally, our proposed codebook ensures compliance with current 3GPP standards for working flow and reference signals. Simulation results demonstrate the superior performance and versatility of our proposed codebook, validating its effectiveness in unifying near-field and far-field precoding for sixth-generation (6G) multiple-input multiple-output (MIMO) systems.
Abstract:In the near-field context, the Fresnel approximation is typically employed to mathematically represent solvable functions of spherical waves. However, these efforts may fail to take into account the significant increase in the lower limit of the Fresnel approximation, known as the Fresnel distance. The lower bound of the Fresnel approximation imposes a constraint that becomes more pronounced as the array size grows. Beyond this constraint, the validity of the Fresnel approximation is broken. As a potential solution, the wavenumber-domain paradigm characterizes the spherical wave using a spectrum composed of a series of linear orthogonal bases. However, this approach falls short of covering the effects of the array geometry, especially when using Gaussian-mixed-model (GMM)-based von Mises-Fisher distributions to approximate all spectra. To fill this gap, this paper introduces a novel wavenumber-domain ellipse fitting (WDEF) method to tackle these challenges. Particularly, the channel is accurately estimated in the near-field region, by maximizing the closed-form likelihood function of the wavenumber-domain spectrum conditioned on the scatterers' geometric parameters. Simulation results are provided to demonstrate the robustness of the proposed scheme against both the distance and angles of arrival.
Abstract:This paper proposes a transmit beamforming strategy for the integrated sensing and communication (ISAC) systems enabled by the novel stacked intelligent metasurface (SIM) architecture, where the base station (BS) simultaneously performs downlink communication and radar target detection via different beams. To ensure superior dual-function performance simultaneously, we design the multi-layer cascading beamformer by maximizing the sum rate of the users while optimally shaping the normalized beam pattern for detection. A dual-normalized differential gradient descent (D3) algorithm is further proposed to solve the resulting non-convex multi-objective problem (MOP), where gradient differences and dual normalization are employed to ensure a fair trade-off between communication and sensing objectives. Numerical results demonstrate the superiority of the proposed beamforming design in terms of balancing communication and sensing performance.
Abstract:This article conceives a unified representation for near-field and far-field holographic multiple-input multiple-output (HMIMO) channels, addressing a practical design dilemma: "Why does the angular-domain representation no longer function effectively?" To answer this question, we pivot from the angular domain to the wavenumber domain and present a succinct overview of its underlying philosophy. In re-examining the Fourier plane-wave series expansion that recasts spherical propagation waves into a series of plane waves represented by Fourier harmonics, we characterize the HMIMO channel employing these Fourier harmonics having different wavenumbers. This approach, referred to as the wavenumebr-domain representation, facilitates a unified view across the far-field and the near-field. Furthermore, the limitations of the DFT basis are demonstrated when identifying the sparsity inherent to the HMIMO channel, motivating the development of a wavenumber-domain basis as an alternative. We then present some preliminary applications of the proposed wavenumber-domain basis in signal processing across both the far-field and near-field, along with several prospects for future HMIMO system designs based on the wavenumber domain.