Abstract:This paper investigates intelligent reflecting surface (IRS)-assisted multiple-input single-output (MISO) visible light communication (VLC) networks utilizing the rate-splitting multiple access (RSMA) scheme. {In these networks,} an eavesdropper (Eve) attempts to eavesdrop on communications intended for legitimate users (LUs). To enhance information security and energy efficiency simultaneously, we formulate a secrecy energy efficiency (SEE) maximization problem. In the formulated problem, beamforming vectors, RSMA common rates, direct current (DC) bias, and IRS alignment matrices are jointly optimized subject to constraints on total power budget, quality of service (QoS) requirements, linear operating region of light emitting diodes (LEDs), and common information rate allocation. Due to the non-convex and NP-hard nature of the formulated problem, we propose a deep reinforcement learning (DRL)-based dual-sampling proximal policy optimization (DS-PPO) approach. {The approach leverages} dual sample strategies and generalized advantage estimation (GAE). In addition, to further simplify the design, we adopt the maximum ratio transmission (MRT) and zero-forcing (ZF) as beamforming vectors in the action space. Simulation results show that the proposed DS-PPO approach outperforms traditional baseline approaches in terms of achievable SEE and significantly improves convergence speed compared to the original PPO approach. Moreover, implementing the RSMA scheme and IRS contributes to overall system performance, {achieving approximately $19.67\%$ improvement over traditional multiple access schemes and $25.74\%$ improvement over networks without IRS deployment.
Abstract:Autonomous cooperative planning (ACP) is a promising technique to improve the efficiency and safety of multi-vehicle interactions for future intelligent transportation systems. However, realizing robust ACP is a challenge due to the aggregation of perception, motion, and communication uncertainties. This paper proposes a novel multi-uncertainty aware ACP (MUACP) framework that simultaneously accounts for multiple types of uncertainties via regularized cooperative model predictive control (RC-MPC). The regularizers and constraints for perception, motion, and communication are constructed according to the confidence levels, weather conditions, and outage probabilities, respectively. The effectiveness of the proposed method is evaluated in the Car Learning to Act (CARLA) simulation platform. Results demonstrate that the proposed MUACP efficiently performs cooperative formation in real time and outperforms other benchmark approaches in various scenarios under imperfect knowledge of the environment.
Abstract:Orthogonal time frequency space (OTFS) modulation is anticipated to be a promising candidate for supporting integrated sensing and communications (ISAC) systems, which is considered as a pivotal technique for realizing next generation wireless networks. In this paper, we develop a minimum bit error rate (BER) precoder design for an OTFS-based ISAC system. In particular, the BER minimization problem takes into account the maximum available transmission power budget and the required sensing performance. Different from prior studies that considered ISAC in the time-frequency (TF) domain, we devise the precoder from the perspective of the delay-Doppler (DD) domain by exploiting the equivalent DD domain channel due to the fact that the DD domain channel generally tends to be sparse and quasi-static, which can facilitate a low-overhead ISAC system design. To address the non-convex optimization design problem, we resort to optimizing the lower bound of the derived average BER by adopting Jensen's inequality. Subsequently, the formulated problem is decoupled into two independent sub-problems via singular value decomposition (SVD) methodology. We then theoretically analyze the feasibility conditions of the proposed problem and present a low-complexity iterative solution via leveraging the Lagrangian duality approach. Simulation results verify the effectiveness of our proposed precoder compared to the benchmark schemes and reveal the interplay between sensing and communication for dual-functional precoder design, indicating a trade-off where transmission efficiency is sacrificed for increasing transmission reliability and sensing accuracy.
Abstract:Cell-free massive multiple-input multiple-output (mMIMO) is a promising technology to empower next-generation mobile communication networks. In this paper, to address the computational complexity associated with conventional fingerprint positioning, we consider a novel cooperative positioning architecture that involves certain relevant access points (APs) to establish positioning similarity coefficients. Then, we propose an innovative joint positioning and correction framework employing multi-agent reinforcement learning (MARL) to tackle the challenges of high-dimensional sophisticated signal processing, which mainly leverages on the received signal strength information for preliminary positioning, supplemented by the angle of arrival information to refine the initial position estimation. Moreover, to mitigate the bias effects originating from remote APs, we design a cooperative weighted K-nearest neighbor (Co-WKNN)-based estimation scheme to select APs with a high correlation to participate in user positioning. In the numerical results, we present comparisons of various user positioning schemes, which reveal that the proposed MARL-based positioning scheme with Co-WKNN can effectively improve positioning performance. It is important to note that the cooperative positioning architecture is a critical element in striking a balance between positioning performance and computational complexity.
Abstract:In this paper, we investigate a cell-free massive multiple-input multiple-output system, which exhibits great potential in enhancing the capabilities of next-generation mobile communication networks. We first study the distributed positioning problem to lay the groundwork for solving resource allocation and interference management issues. Instead of relying on computationally and spatially complex fingerprint positioning methods, we propose a novel two-stage distributed collaborative positioning architecture with multi-agent reinforcement learning (MARL) network, consisting of a received signal strength-based preliminary positioning network and an angle of arrival-based auxiliary correction network. Our experimental results demonstrate that the two-stage distributed collaborative user positioning architecture can outperform conventional fingerprint positioning methods in terms of positioning accuracy.
Abstract:In this paper, we investigate the performance of the cross-domain iterative detection (CDID) framework with orthogonal time frequency space (OTFS) modulation, where two distinct CDID algorithms are presented. The proposed schemes estimate/detect the information symbols iteratively across the frequency domain and the delay-Doppler (DD) domain via passing either the a posteriori or extrinsic information. Building upon this framework, we investigate the error performance by considering the bias evolution and state evolution. Furthermore, we discuss their error performance in convergence and the DD domain error state lower bounds in each iteration. Specifically, we demonstrate that in convergence, the ultimate error performance of the CDID passing the a posteriori information can be characterized by two potential convergence points. In contrast, the ultimate error performance of the CDID passing the extrinsic information has only one convergence point, which, interestingly, aligns with the matched filter bound. Our numerical results confirm our analytical findings and unveil the promising error performance achieved by the proposed designs.
Abstract:This letter addresses a multivariate optimization problem for linear movable antenna arrays (MAAs). Particularly, the position and beamforming vectors of the under-investigated MAA are optimized simultaneously to maximize the minimum beamforming gain across several intended directions, while ensuring interference levels at various unintended directions remain below specified thresholds. To this end, a swarm-intelligence-based firefly algorithm (FA) is introduced to acquire an effective solution to the optimization problem. Simulation results reveal the superior performance of the proposed FA approach compared to the state-of-the-art approach employing alternating optimization and successive convex approximation. This is attributed to the FA's effectiveness in handling non-convex multivariate and multimodal optimization problems without resorting approximations.
Abstract:Movable antennas (MAs) represent a promising paradigm to enhance the spatial degrees of freedom of conventional multi-antenna systems by dynamically adapting the positions of antenna elements within a designated transmit area. In particular, by employing electro-mechanical MA drivers, the positions of the MA elements can be adjusted to shape a favorable spatial correlation for improving system performance. Although preliminary research has explored beamforming designs for MA systems, the intricacies of the power consumption and the precise positioning of MA elements are not well understood. Moreover, the assumption of perfect CSI adopted in the literature is impractical due to the significant pilot overhead and the extensive time to acquire perfect CSI. To address these challenges, we model the motion of MA elements through discrete steps and quantify the associated power consumption as a function of these movements. Furthermore, by leveraging the properties of the MA channel model, we introduce a novel CSI error model tailored for MA systems that facilitates robust resource allocation design. In particular, we optimize the beamforming and the MA positions at the BS to minimize the total BS power consumption, encompassing both radiated and MA motion power while guaranteeing a minimum required SINR for each user. To this end, novel algorithms exploiting the branch and bound (BnB) method are developed to obtain the optimal solution for perfect and imperfect CSI. Moreover, to support practical implementation, we propose low-complexity algorithms with guaranteed convergence by leveraging successive convex approximation (SCA). Our numerical results validate the optimality of the proposed BnB-based algorithms. Furthermore, we unveil that both proposed SCA-based algorithms approach the optimal performance within a few iterations, thus highlighting their practical advantages.
Abstract:Stacked intelligent metasurfaces (SIMs) represent a novel signal processing paradigm that enables over-the-air processing of electromagnetic waves at the speed of light. Their multi-layer architecture exhibits customizable computational capabilities compared to conventional single-layer reconfigurable intelligent surfaces and metasurface lenses. In this paper, we deploy SIM to improve the performance of multi-user multiple-input single-output (MISO) wireless systems through a low complexity manner with reduced numbers of transmit radio frequency chains. In particular, an optimization formulation for the joint design of the SIM phase shifts and the transmit power allocation is presented, which is efficiently tackled via a customized deep reinforcement learning (DRL) approach that systematically explores pre-designed states of the SIM-parametrized smart wireless environment. The presented performance evaluation results demonstrate the proposed method's capability to effectively learn from the wireless environment, while consistently outperforming conventional precoding schemes under low transmit power conditions. Furthermore, the implementation of hyperparameter tuning and whitening process significantly enhance the robustness of the proposed DRL framework.
Abstract:This article conceives a unified representation for near-field and far-field holographic multiple-input multiple-output (HMIMO) channels, addressing a practical design dilemma: "Why does the angular-domain representation no longer function effectively?" To answer this question, we pivot from the angular domain to the wavenumber domain and present a succinct overview of its underlying philosophy. In re-examining the Fourier plane-wave series expansion that recasts spherical propagation waves into a series of plane waves represented by Fourier harmonics, we characterize the HMIMO channel employing these Fourier harmonics having different wavenumbers. This approach, referred to as the wavenumebr-domain representation, facilitates a unified view across the far-field and the near-field. Furthermore, the limitations of the DFT basis are demonstrated when identifying the sparsity inherent to the HMIMO channel, motivating the development of a wavenumber-domain basis as an alternative. We then present some preliminary applications of the proposed wavenumber-domain basis in signal processing across both the far-field and near-field, along with several prospects for future HMIMO system designs based on the wavenumber domain.