Computer Science and Technology, University of Science and Technology of China
Abstract:With the rapid advancement of autonomous driving technology, efficient and accurate object detection capabilities have become crucial factors in ensuring the safety and reliability of autonomous driving systems. However, in low-visibility environments such as hazy conditions, the performance of traditional object detection algorithms often degrades significantly, failing to meet the demands of autonomous driving. To address this challenge, this paper proposes two innovative deep learning models: YOLO-Vehicle and YOLO-Vehicle-Pro. YOLO-Vehicle is an object detection model tailored specifically for autonomous driving scenarios, employing multimodal fusion techniques to combine image and textual information for object detection. YOLO-Vehicle-Pro builds upon this foundation by introducing an improved image dehazing algorithm, enhancing detection performance in low-visibility environments. In addition to model innovation, this paper also designs and implements a cloud-edge collaborative object detection system, deploying models on edge devices and offloading partial computational tasks to the cloud in complex situations. Experimental results demonstrate that on the KITTI dataset, the YOLO-Vehicle-v1s model achieved 92.1% accuracy while maintaining a detection speed of 226 FPS and an inference time of 12ms, meeting the real-time requirements of autonomous driving. When processing hazy images, the YOLO-Vehicle-Pro model achieved a high accuracy of 82.3% mAP@50 on the Foggy Cityscapes dataset while maintaining a detection speed of 43 FPS.
Abstract:Underwater image processing and analysis have been a hotspot of study in recent years, as more emphasis has been focused to underwater monitoring and usage of marine resources. Compared with the open environment, underwater image encountered with more complicated conditions such as light abortion, scattering, turbulence, nonuniform illumination and color diffusion. Although considerable advances and enhancement techniques achieved in resolving these issues, they treat low-frequency information equally across the entire channel, which results in limiting the network's representativeness. We propose a deep learning and feature-attention-based end-to-end network (FA-Net) to solve this problem. In particular, we propose a Residual Feature Attention Block (RFAB), containing the channel attention, pixel attention, and residual learning mechanism with long and short skip connections. RFAB allows the network to focus on learning high-frequency information while skipping low-frequency information on multi-hop connections. The channel and pixel attention mechanism considers each channel's different features and the uneven distribution of haze over different pixels in the image. The experimental results shows that the FA-Net propose by us provides higher accuracy, quantitatively and qualitatively and superiority to previous state-of-the-art methods.
Abstract:Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.