Abstract:Disaster recovery and management present significant challenges, particularly in unstable environments and hard-to-reach terrains. These difficulties can be overcome by employing unmanned aerial vehicles (UAVs) equipped with onboard embedded platforms and camera sensors. In this work, we address the critical need for accurate and timely disaster detection by enabling onboard aerial imagery processing and avoiding connectivity, privacy, and latency issues despite the challenges posed by limited onboard hardware resources. We propose a UAV-assisted edge framework for real-time disaster management, leveraging our proposed model optimized for real-time aerial image classification. The optimization of the model employs post-training quantization techniques. For real-world disaster scenarios, we introduce a novel dataset, DisasterEye, featuring UAV-captured disaster scenes as well as ground-level images taken by individuals on-site. Experimental results demonstrate the effectiveness of our model, achieving high accuracy with reduced inference latency and memory usage on resource-constrained devices. The framework's scalability and adaptability make it a robust solution for real-time disaster detection on resource-limited UAV platforms.
Abstract:With the increasing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and communication for sixth-generation (6G) network is emerging as a revolutionary architecture. This paper presents a comprehensive overview of AI and communication for 6G networks, emphasizing their foundational principles, inherent challenges, and future research opportunities. We commence with a retrospective analysis of AI and the evolution of large-scale AI models, underscoring their pivotal roles in shaping contemporary communication technologies. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The initial stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The subsequent stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, including digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services and support application scenarios like immersive communication and intelligent industrial robots. Specifically, we have defined the quality of AI service, which refers to the measurement framework system of AI services within the network. In addition to these developmental stages, we thoroughly examine the standardization processes pertinent to AI in network contexts, highlighting key milestones and ongoing efforts. Finally, we outline promising future research opportunities that could drive the evolution and refinement of AI and communication for 6G, positioning them as a cornerstone of next-generation communication infrastructure.
Abstract:To mitigate the rising concern about privacy leakage, the federated recommender (FR) paradigm emerges, in which decentralized clients co-train the recommendation model without exposing their raw user-item rating data. The differentially private federated recommender (DPFR) further enhances FR by injecting differentially private (DP) noises into clients. Yet, current DPFRs, suffering from noise distortion, cannot achieve satisfactory accuracy. Various efforts have been dedicated to improving DPFRs by adaptively allocating the privacy budget over the learning process. However, due to the intricate relation between privacy budget allocation and model accuracy, existing works are still far from maximizing DPFR accuracy. To address this challenge, we develop BGTplanner (Budget Planner) to strategically allocate the privacy budget for each round of DPFR training, improving overall training performance. Specifically, we leverage the Gaussian process regression and historical information to predict the change in recommendation accuracy with a certain allocated privacy budget. Additionally, Contextual Multi-Armed Bandit (CMAB) is harnessed to make privacy budget allocation decisions by reconciling the current improvement and long-term privacy constraints. Our extensive experimental results on real datasets demonstrate that \emph{BGTplanner} achieves an average improvement of 6.76\% in training performance compared to state-of-the-art baselines.
Abstract:Detecting temporal changes in geographical landscapes is critical for applications like environmental monitoring and urban planning. While remote sensing data is abundant, existing vision-language models (VLMs) often fail to capture temporal dynamics effectively. This paper addresses these limitations by introducing an annotated dataset of video frame pairs to track evolving geographical patterns over time. Using fine-tuning techniques like Low-Rank Adaptation (LoRA), quantized LoRA (QLoRA), and model pruning on models such as Video-LLaVA and LLaVA-NeXT-Video, we significantly enhance VLM performance in processing remote sensing temporal changes. Results show significant improvements, with the best performance achieving a BERT score of 0.864 and ROUGE-1 score of 0.576, demonstrating superior accuracy in describing land-use transformations.
Abstract:Recent attention-based volumetric segmentation (VS) methods have achieved remarkable performance in the medical domain which focuses on modeling long-range dependencies. However, for voxel-wise prediction tasks, discriminative local features are key components for the performance of the VS models which is missing in attention-based VS methods. Aiming at resolving this issue, we deliberately incorporate the convolutional encoder branch with transformer backbone to extract local and global features in a parallel manner and aggregate them in Cross Feature Mixer Module (CFMM) for better prediction of segmentation mask. Consequently, we observe that the derived model, Y-CT-Net, achieves competitive performance on multiple medical segmentation tasks. For example, on multi-organ segmentation, Y-CT-Net achieves an 82.4% dice score, surpassing well-tuned VS Transformer/CNN-like baselines UNETR/ResNet-3D by 2.9%/1.4%. With the success of Y-CT-Net, we extend this concept with hybrid attention models, that derived Y-CH-Net model, which brings a 3% improvement in terms of HD95 score for same segmentation task. The effectiveness of both models Y-CT-Net and Y-CH-Net verifies our hypothesis and motivates us to initiate the concept of Y-CA-Net, a versatile generic architecture based upon any two encoders and a decoder backbones, to fully exploit the complementary strengths of both convolution and attention mechanisms. Based on experimental results, we argue Y-CA-Net is a key player in achieving superior results for volumetric segmentation.
Abstract:Large model inference is shifting from cloud to edge due to concerns about the privacy of user interaction data. However, edge devices often struggle with limited computing power, memory, and bandwidth, requiring collaboration across multiple devices to run and speed up LLM inference. Pipeline parallelism, the mainstream solution, is inefficient for single-user scenarios, while tensor parallelism struggles with frequent communications. In this paper, we argue that tensor parallelism can be more effective than pipeline on low-resource devices, and present a compute- and memory-efficient tensor parallel inference system, named TPI-LLM, to serve 70B-scale models. TPI-LLM keeps sensitive raw data local in the users' devices and introduces a sliding window memory scheduler to dynamically manage layer weights during inference, with disk I/O latency overlapped with the computation and communication. This allows larger models to run smoothly on memory-limited devices. We analyze the communication bottleneck and find that link latency, not bandwidth, emerges as the main issue, so a star-based allreduce algorithm is implemented. Through extensive experiments on both emulated and real testbeds, TPI-LLM demonstrated over 80% less time-to-first-token and token latency compared to Accelerate, and over 90% compared to Transformers and Galaxy, while cutting the peak memory footprint of Llama 2-70B by 90%, requiring only 3.1 GB of memory for 70B-scale models.
Abstract:Symbiotic communication (SC) is known as a new wireless communication paradigm, similar to the natural ecosystem population, and can enable multiple communication systems to cooperate and mutualize through service exchange and resource sharing. As a result, SC is seen as an important potential technology for future sixth-generation (6G) communications, solving the problem of lack of spectrum resources and energy inefficiency. Symbiotic relationships among communication systems can complement radio resources in 6G. However, the absence of established trust relationships among diverse communication systems presents a formidable hurdle in ensuring efficient and trusted resource and service exchange within SC frameworks. To better realize trusted SC services in 6G, in this paper, we propose a solution that converges SC and blockchain, called a symbiotic blockchain network (SBN). Specifically, we first use cognitive backscatter communication to transform blockchain consensus, that is, the symbiotic blockchain consensus (SBC), so that it can be better suited for the wireless network. Then, for SBC, we propose a highly energy-efficient sharding scheme to meet the extremely low power consumption requirements in 6G. Finally, such a blockchain scheme guarantees trusted transactions of communication services in SC. Through ablation experiments, our proposed SBN demonstrates significant efficacy in mitigating energy consumption and reducing processing latency in adversarial networks, which is expected to achieve a sustainable and trusted 6G wireless network.
Abstract:The metaverse, envisioned as the next digital frontier for avatar-based virtual interaction, involves high-performance models. In this dynamic environment, users' tasks frequently shift, requiring fast model personalization despite limited data. This evolution consumes extensive resources and requires vast data volumes. To address this, meta-learning emerges as an invaluable tool for metaverse users, with federated meta-learning (FML), offering even more tailored solutions owing to its adaptive capabilities. However, the metaverse is characterized by users heterogeneity with diverse data structures, varied tasks, and uneven sample sizes, potentially undermining global training outcomes due to statistical difference. Given this, an urgent need arises for smart coalition formation that accounts for these disparities. This paper introduces a dual game-theoretic framework for metaverse services involving meta-learners as workers to manage FML. A blockchain-based cooperative coalition formation game is crafted, grounded on a reputation metric, user similarity, and incentives. We also introduce a novel reputation system based on users' historical contributions and potential contributions to present tasks, leveraging correlations between past and new tasks. Finally, a Stackelberg game-based incentive mechanism is presented to attract reliable workers to participate in meta-learning, minimizing users' energy costs, increasing payoffs, boosting FML efficacy, and improving metaverse utility. Results show that our dual game framework outperforms best-effort, random, and non-uniform clustering schemes - improving training performance by up to 10%, cutting completion times by as much as 30%, enhancing metaverse utility by more than 25%, and offering up to 5% boost in training efficiency over non-blockchain systems, effectively countering misbehaving users.
Abstract:Existing vision-text contrastive learning models enhance representation transferability and support zero-shot prediction by matching paired image and caption embeddings while pushing unrelated pairs apart. However, astronomical image-label datasets are significantly smaller compared to general image and label datasets available from the internet. We introduce CosmoCLIP, an astronomical image-text contrastive learning framework precisely fine-tuned on the pre-trained CLIP model using SpaceNet and BLIP-based captions. SpaceNet, attained via FLARE, constitutes ~13k optimally distributed images, while BLIP acts as a rich knowledge extractor. The rich semantics derived from this SpaceNet and BLIP descriptions, when learned contrastively, enable CosmoCLIP to achieve superior generalization across various in-domain and out-of-domain tasks. Our results demonstrate that CosmoCLIP is a straightforward yet powerful framework, significantly outperforming CLIP in zero-shot classification and image-text retrieval tasks.
Abstract:The prevalence of AI-generated imagery has raised concerns about the authenticity of astronomical images, especially with advanced text-to-image models like Stable Diffusion producing highly realistic synthetic samples. Existing detection methods, primarily based on convolutional neural networks (CNNs) or spectral analysis, have limitations when used independently. We present AstroSpy, a hybrid model that integrates both spectral and image features to distinguish real from synthetic astronomical images. Trained on a unique dataset of real NASA images and AI-generated fakes (approximately 18k samples), AstroSpy utilizes a dual-pathway architecture to fuse spatial and spectral information. This approach enables AstroSpy to achieve superior performance in identifying authentic astronomical images. Extensive evaluations demonstrate AstroSpy's effectiveness and robustness, significantly outperforming baseline models in both in-domain and cross-domain tasks, highlighting its potential to combat misinformation in astronomy.