Abstract:This study presents the first implementation of multilayer neural networks on a memristor/CMOS integrated system on chip (SoC) to simultaneously detect multiple diseases. To overcome limitations in medical data, generative AI techniques are used to enhance the dataset, improving the classifier's robustness and diversity. The system achieves notable performance with low latency, high accuracy (91.82%), and energy efficiency, facilitated by end-to-end execution on a memristor-based SoC with ten 256x256 crossbar arrays and an integrated on-chip processor. This research showcases the transformative potential of memristive in-memory computing hardware in accelerating machine learning applications for medical diagnostics.
Abstract:Subgraph federated learning (subgraph-FL) is a new distributed paradigm that facilitates the collaborative training of graph neural networks (GNNs) by multi-client subgraphs. Unfortunately, a significant challenge of subgraph-FL arises from subgraph heterogeneity, which stems from node and topology variation, causing the impaired performance of the global GNN. Despite various studies, they have not yet thoroughly investigated the impact mechanism of subgraph heterogeneity. To this end, we decouple node and topology variation, revealing that they correspond to differences in label distribution and structure homophily. Remarkably, these variations lead to significant differences in the class-wise knowledge reliability of multiple local GNNs, misguiding the model aggregation with varying degrees. Building on this insight, we propose topology-aware data-free knowledge distillation technology (FedTAD), enhancing reliable knowledge transfer from the local model to the global model. Extensive experiments on six public datasets consistently demonstrate the superiority of FedTAD over state-of-the-art baselines.
Abstract:Different from conventional federated learning, personalized federated learning (PFL) is able to train a customized model for each individual client according to its unique requirement. The mainstream approach is to adopt a kind of weighted aggregation method to generate personalized models, in which weights are determined by the loss value or model parameters among different clients. However, such kinds of methods require clients to download others' models. It not only sheer increases communication traffic but also potentially infringes data privacy. In this paper, we propose a new PFL algorithm called \emph{FedDWA (Federated Learning with Dynamic Weight Adjustment)} to address the above problem, which leverages the parameter server (PS) to compute personalized aggregation weights based on collected models from clients. In this way, FedDWA can capture similarities between clients with much less communication overhead. More specifically, we formulate the PFL problem as an optimization problem by minimizing the distance between personalized models and guidance models, so as to customize aggregation weights for each client. Guidance models are obtained by the local one-step ahead adaptation on individual clients. Finally, we conduct extensive experiments using five real datasets and the results demonstrate that FedDWA can significantly reduce the communication traffic and achieve much higher model accuracy than the state-of-the-art approaches.
Abstract:Federated learning (FL) is a prospective distributed machine learning framework that can preserve data privacy. In particular, cross-silo FL can complete model training by making isolated data islands of different organizations collaborate with a parameter server (PS) via exchanging model parameters for multiple communication rounds. In cross-silo FL, an incentive mechanism is indispensable for motivating data owners to contribute their models to FL training. However, how to allocate the reward budget among different rounds is an essential but complicated problem largely overlooked by existing works. The challenge of this problem lies in the opaque feedback between reward budget allocation and model utility improvement of FL, making the optimal reward budget allocation complicated. To address this problem, we design an online reward budget allocation algorithm using Bayesian optimization named BARA (\underline{B}udget \underline{A}llocation for \underline{R}everse \underline{A}uction). Specifically, BARA can model the complicated relationship between reward budget allocation and final model accuracy in FL based on historical training records so that the reward budget allocated to each communication round is dynamically optimized so as to maximize the final model utility. We further incorporate the BARA algorithm into reverse auction-based incentive mechanisms to illustrate its effectiveness. Extensive experiments are conducted on real datasets to demonstrate that BARA significantly outperforms competitive baselines by improving model utility with the same amount of reward budget.
Abstract:Edge computing has been getting a momentum with ever-increasing data at the edge of the network. In particular, huge amounts of video data and their real-time processing requirements have been increasingly hindering the traditional cloud computing approach due to high bandwidth consumption and high latency. Edge computing in essence aims to overcome this hindrance by processing most video data making use of edge servers, such as small-scale on-premises server clusters, server-grade computing resources at mobile base stations and even mobile devices like smartphones and tablets; hence, the term edge-based video analytics. However, the actual realization of such analytics requires more than the simple, collective use of edge servers. In this paper, we survey state-of-the-art works on edge-based video analytics with respect to applications, architectures, techniques, resource management, security and privacy. We provide a comprehensive and detailed review on what works, what doesn't work and why. These findings give insights and suggestions for next generation edge-based video analytics. We also identify open issues and research directions.
Abstract:Learning pyramidal feature representations is crucial for recognizing object instances at different scales. Feature Pyramid Network (FPN) is the classic architecture to build a feature pyramid with high-level semantics throughout. However, intrinsic defects in feature extraction and fusion inhibit FPN from further aggregating more discriminative features. In this work, we propose Attention Aggregation based Feature Pyramid Network (A^2-FPN), to improve multi-scale feature learning through attention-guided feature aggregation. In feature extraction, it extracts discriminative features by collecting-distributing multi-level global context features, and mitigates the semantic information loss due to drastically reduced channels. In feature fusion, it aggregates complementary information from adjacent features to generate location-wise reassembly kernels for content-aware sampling, and employs channel-wise reweighting to enhance the semantic consistency before element-wise addition. A^2-FPN shows consistent gains on different instance segmentation frameworks. By replacing FPN with A^2-FPN in Mask R-CNN, our model boosts the performance by 2.1% and 1.6% mask AP when using ResNet-50 and ResNet-101 as backbone, respectively. Moreover, A^2-FPN achieves an improvement of 2.0% and 1.4% mask AP when integrated into the strong baselines such as Cascade Mask R-CNN and Hybrid Task Cascade.
Abstract:Traditional computing hardware often encounters on-chip memory bottleneck on large scale Convolution Neural Networks (CNN) applications. With its unique in-memory computing feature, resistive crossbar-based computing attracts researchers' attention as a promising solution to the memory bottleneck issue in von Neumann architectures. However, the parasitic resistances in the crossbar deviate its behavior from the ideal weighted summation operation. In large-scale implementations, the impact of parasitic resistances must be carefully considered and mitigated to ensure circuits' functionality. In this work, we implemented and simulated CNNs on resistive crossbar circuits with consideration of parasitic resistances. Moreover, we carried out a new mapping scheme for high utilization of crossbar arrays on convolution, and a mitigation algorithm to mitigate parasitic resistances in CNN applications. The mitigation algorithm considers parasitic resistances as well as data/kernel patterns of each layer to minimize the computing error in crossbar-based convolutions of CNNs. We demonstrated the proposed methods with implementations of a 4-layer CNN on MNIST and ResNet(20, 32, and 56) on CIFAR-10. Simulation results show the proposed methods well mitigate the parasitic resistances in crossbars. With our methods, modern CNNs on crossbars can preserve ideal(software) level classification accuracy with 6-bit ADCs and DACs implementation.
Abstract:With storage and computation happening at the same place, computing in resistive crossbars minimizes data movement and avoids the memory bottleneck issue. It leads to ultra-high energy efficiency for data-intensive applications. However, defects in crossbars severely affect computing accuracy. Existing solutions, including re-training with defects and redundant designs, but they have limitations in practical implementations. In this work, we introduce row shuffling and output compensation to mitigate defects without re-training or redundant resistive crossbars. We also analyzed the coupling effects of defects and circuit parasitics. Moreover, We study different combinations of methods to achieve the best trade-off between cost and performance. Our proposed methods could rescue up to 10% of defects in ResNet-20 application without performance degradation.
Abstract:In this paper, we firstly introduce a method to efficiently implement large-scale high-dimensional convolution with realistic memristor-based circuit components. An experiment verified simulator is adapted for accurate prediction of analog crossbar behavior. An improved conversion algorithm is developed to convert convolution kernels to memristor-based circuits, which minimizes the error with consideration of the data and kernel patterns in CNNs. With circuit simulation for all convolution layers in ResNet-20, we found that 8-bit ADC/DAC is necessary to preserve software level classification accuracy.