Abstract:Autism Spectrum Disorder (ASD) is often underdiagnosed in females due to gender-specific symptom differences overlooked by conventional diagnostics. This study evaluates machine learning models, particularly Random Forest and convolutional neural networks, for enhancing ASD diagnosis through structured data and facial image analysis. Random Forest achieved 100% validation accuracy across datasets, highlighting its ability to manage complex relationships and reduce false negatives, which is crucial for early intervention and addressing gender biases. In image-based analysis, MobileNet outperformed the baseline CNN, achieving 87% accuracy, though a 30% validation loss suggests possible overfitting, requiring further optimization for robustness in clinical settings. Future work will emphasize hyperparameter tuning, regularization, and transfer learning. Integrating behavioral data with facial analysis could improve diagnosis for underdiagnosed groups. These findings suggest Random Forest's high accuracy and balanced precision-recall metrics could enhance clinical workflows. MobileNet's lightweight structure also shows promise for resource-limited environments, enabling accessible ASD screening. Addressing model explainability and clinician trust will be vital.
Abstract:Denial of Service (DoS) attacks pose a significant threat in the realm of AI systems security, causing substantial financial losses and downtime. However, AI systems' high computational demands, dynamic behavior, and data variability make monitoring and detecting DoS attacks challenging. Nowadays, statistical and machine learning (ML)-based DoS classification and detection approaches utilize a broad range of feature selection mechanisms to select a feature subset from networking traffic datasets. Feature selection is critical in enhancing the overall model performance and attack detection accuracy while reducing the training time. In this paper, we investigate the importance of feature selection in improving ML-based detection of DoS attacks. Specifically, we explore feature contribution to the overall components in DoS traffic datasets by utilizing statistical analysis and feature engineering approaches. Our experimental findings demonstrate the usefulness of the thorough statistical analysis of DoS traffic and feature engineering in understanding the behavior of the attack and identifying the best feature selection for ML-based DoS classification and detection.
Abstract:Thanks to the high potential for profit, trading has become increasingly attractive to investors as the cryptocurrency and stock markets rapidly expand. However, because financial markets are intricate and dynamic, accurately predicting prices remains a significant challenge. The volatile nature of the cryptocurrency market makes it even harder for traders and investors to make decisions. This study presents a machine learning model based on classification to forecast the direction of the cryptocurrency market, i.e., whether prices will increase or decrease. The model is trained using historical data and important technical indicators such as the Moving Average Convergence Divergence, the Relative Strength Index, and Bollinger Bands. We illustrate our approach with an empirical study of the closing price of Bitcoin. Several simulations, including a confusion matrix and Receiver Operating Characteristic curve, are used to assess the model's performance, and the results show a buy/sell signal accuracy of over 92%. These findings demonstrate how machine learning models can assist investors and traders of cryptocurrencies in making wise/informed decisions in a very volatile market.
Abstract:Federated Learning (FL) represents a paradigm shift in machine learning, allowing collaborative model training while keeping data localized. This approach is particularly pertinent in the Industrial Internet of Things (IIoT) context, where data privacy, security, and efficient utilization of distributed resources are paramount. The essence of FL in IIoT lies in its ability to learn from diverse, distributed data sources without requiring central data storage, thus enhancing privacy and reducing communication overheads. However, despite its potential, several challenges impede the widespread adoption of FL in IIoT, notably in ensuring interpretability and robustness. This article focuses on enabling trustworthy FL in IIoT by bridging the gap between interpretability and robustness, which is crucial for enhancing trust, improving decision-making, and ensuring compliance with regulations. Moreover, the design strategies summarized in this article ensure that FL systems in IIoT are transparent and reliable, vital in industrial settings where decisions have significant safety and economic impacts. The case studies in the IIoT environment driven by trustworthy FL models are provided, wherein the practical insights of trustworthy communications between IIoT systems and their end users are highlighted.
Abstract:The rapid growth of the stock market has attracted many investors due to its potential for significant profits. However, predicting stock prices accurately is difficult because financial markets are complex and constantly changing. This is especially true for the cryptocurrency market, which is known for its extreme volatility, making it challenging for traders and investors to make wise and profitable decisions. This study introduces a machine learning approach to predict cryptocurrency prices. Specifically, we make use of important technical indicators such as Exponential Moving Average (EMA) and Moving Average Convergence Divergence (MACD) to train and feed the XGBoost regressor model. We demonstrate our approach through an analysis focusing on the closing prices of Bitcoin cryptocurrency. We evaluate the model's performance through various simulations, showing promising results that suggest its usefulness in aiding/guiding cryptocurrency traders and investors in dynamic market conditions.
Abstract:Automated scraping stands out as a common method for collecting data in deep learning models without the authorization of data owners. Recent studies have begun to tackle the privacy concerns associated with this data collection method. Notable approaches include Deepconfuse, error-minimizing, error-maximizing (also known as adversarial poisoning), Neural Tangent Generalization Attack, synthetic, autoregressive, One-Pixel Shortcut, Self-Ensemble Protection, Entangled Features, Robust Error-Minimizing, Hypocritical, and TensorClog. The data generated by those approaches, called "unlearnable" examples, are prevented "learning" by deep learning models. In this research, we investigate and devise an effective nonlinear transformation framework and conduct extensive experiments to demonstrate that a deep neural network can effectively learn from the data/examples traditionally considered unlearnable produced by the above twelve approaches. The resulting approach improves the ability to break unlearnable data compared to the linear separable technique recently proposed by researchers. Specifically, our extensive experiments show that the improvement ranges from 0.34% to 249.59% for the unlearnable CIFAR10 datasets generated by those twelve data protection approaches, except for One-Pixel Shortcut. Moreover, the proposed framework achieves over 100% improvement of test accuracy for Autoregressive and REM approaches compared to the linear separable technique. Our findings suggest that these approaches are inadequate in preventing unauthorized uses of data in machine learning models. There is an urgent need to develop more robust protection mechanisms that effectively thwart an attacker from accessing data without proper authorization from the owners.
Abstract:Distributed Denial of Service (DDoS) attacks pose an increasingly substantial cybersecurity threat to organizations across the globe. In this paper, we introduce a new deep learning-based technique for detecting DDoS attacks, a paramount cybersecurity challenge with evolving complexity and scale. Specifically, we propose a new dual-space prototypical network that leverages a unique dual-space loss function to enhance detection accuracy for various attack patterns through geometric and angular similarity measures. This approach capitalizes on the strengths of representation learning within the latent space (a lower-dimensional representation of data that captures complex patterns for machine learning analysis), improving the model's adaptability and sensitivity towards varying DDoS attack vectors. Our comprehensive evaluation spans multiple training environments, including offline training, simulated online training, and prototypical network scenarios, to validate the model's robustness under diverse data abundance and scarcity conditions. The Multilayer Perceptron (MLP) with Attention, trained with our dual-space prototypical design over a reduced training set, achieves an average accuracy of 94.85% and an F1-Score of 94.71% across our tests, showcasing its effectiveness in dynamic and constrained real-world scenarios.
Abstract:Distributed Denial of Service (DDoS) attacks pose a significant threat to the stability and reliability of online systems. Effective and early detection of such attacks is pivotal for safeguarding the integrity of networks. In this work, we introduce an enhanced approach for DDoS attack detection by leveraging the capabilities of Deep Residual Neural Networks (ResNets) coupled with synthetic oversampling techniques. Because of the inherent class imbalance in many cyber-security datasets, conventional methods often struggle with false negatives, misclassifying subtle DDoS patterns as benign. By applying the Synthetic Minority Over-sampling Technique (SMOTE) to the CICIDS dataset, we balance the representation of benign and malicious data points, enabling the model to better discern intricate patterns indicative of an attack. Our deep residual network, tailored for this specific task, further refines the detection process. Experimental results on a real-world dataset demonstrate that our approach achieves an accuracy of 99.98%, significantly outperforming traditional methods. This work underscores the potential of combining advanced data augmentation techniques with deep learning models to bolster cyber-security defenses.
Abstract:Unmanned Aerial Vehicles (UAVs), previously favored by enthusiasts, have evolved into indispensable tools for effectively managing disasters and responding to emergencies. For example, one of their most critical applications is to provide seamless wireless communication services in remote rural areas. Thus, it is substantial to identify and consider the different security challenges in the research and development associated with advanced UAV-based B5G/6G architectures. Following this requirement, the present study thoroughly examines the security considerations about UAVs in relation to the architectural framework of the 5G/6G system, the technologies that facilitate its operation, and the concerns surrounding privacy. It exhibits security integration at all the protocol stack layers and analyzes the existing mechanisms to secure UAV-based B5G/6G communications and its energy and power optimization factors. Last, this article also summarizes modern technological trends for establishing security and protecting UAV-based systems, along with the open challenges and strategies for future research work.
Abstract:Visual homing is a lightweight approach to visual navigation. Given the stored information of an initial 'home' location, the navigation task back to this location is achieved from any other location by comparing the stored home information to the current image and extracting a motion vector. A challenge that constrains the applicability of visual homing is that the home location must be within the robot's field of view to initiate the homing process. Thus, we propose a blockchain approach to visual navigation for a heterogeneous robot team over a wide area of visual navigation. Because it does not require map data structures, the approach is useful for robot platforms with a small computational footprint, and because it leverages current visual information, it supports a resilient and adaptive path selection. Further, we present a lightweight Proof-of-Work (PoW) mechanism for reaching consensus in the untrustworthy visual homing network.