Abstract:A chatbot is an intelligent software application that automates conversations and engages users in natural language through messaging platforms. Leveraging artificial intelligence (AI), chatbots serve various functions, including customer service, information gathering, and casual conversation. Existing virtual assistant chatbots, such as ChatGPT and Gemini, demonstrate the potential of AI in Natural Language Processing (NLP). However, many current solutions rely on predefined APIs, which can result in vendor lock-in and high costs. To address these challenges, this work proposes a chatbot developed using a Sequence-to-Sequence (Seq2Seq) model with an encoder-decoder architecture that incorporates attention mechanisms and Long Short-Term Memory (LSTM) cells. By avoiding predefined APIs, this approach ensures flexibility and cost-effectiveness. The chatbot is trained, validated, and tested on a dataset specifically curated for the tourism sector in Draa-Tafilalet, Morocco. Key evaluation findings indicate that the proposed Seq2Seq model-based chatbot achieved high accuracies: approximately 99.58% in training, 98.03% in validation, and 94.12% in testing. These results demonstrate the chatbot's effectiveness in providing relevant and coherent responses within the tourism domain, highlighting the potential of specialized AI applications to enhance user experience and satisfaction in niche markets.
Abstract:Autism Spectrum Disorder (ASD) is often underdiagnosed in females due to gender-specific symptom differences overlooked by conventional diagnostics. This study evaluates machine learning models, particularly Random Forest and convolutional neural networks, for enhancing ASD diagnosis through structured data and facial image analysis. Random Forest achieved 100% validation accuracy across datasets, highlighting its ability to manage complex relationships and reduce false negatives, which is crucial for early intervention and addressing gender biases. In image-based analysis, MobileNet outperformed the baseline CNN, achieving 87% accuracy, though a 30% validation loss suggests possible overfitting, requiring further optimization for robustness in clinical settings. Future work will emphasize hyperparameter tuning, regularization, and transfer learning. Integrating behavioral data with facial analysis could improve diagnosis for underdiagnosed groups. These findings suggest Random Forest's high accuracy and balanced precision-recall metrics could enhance clinical workflows. MobileNet's lightweight structure also shows promise for resource-limited environments, enabling accessible ASD screening. Addressing model explainability and clinician trust will be vital.
Abstract:This article outlines the architecture of autonomous driving and related complementary frameworks from the perspective of human comfort. The technical elements for measuring Autonomous Vehicle (AV) user comfort and psychoanalysis are listed here. At the same time, this article introduces the technology related to the structure of automatic driving and the reaction time of automatic driving. We also discuss the technical details related to the automatic driving comfort system, the response time of the AV driver, the comfort level of the AV, motion sickness, and related optimization technologies. The function of the sensor is affected by various factors. Since the sensor of automatic driving mainly senses the environment around a vehicle, including "the weather" which introduces the challenges and limitations of second-hand sensors in autonomous vehicles under different weather conditions. The comfort and safety of autonomous driving are also factors that affect the development of autonomous driving technologies. This article further analyzes the impact of autonomous driving on the user's physical and psychological states and how the comfort factors of autonomous vehicles affect the automotive market. Also, part of our focus is on the benefits and shortcomings of autonomous driving. The goal is to present an exhaustive overview of the most relevant technical matters to help researchers and application developers comprehend the different comfort factors and systems of autonomous driving. Finally, we provide detailed automated driving comfort use cases to illustrate the comfort-related issues of autonomous driving. Then, we provide implications and insights for the future of autonomous driving.