Abstract:Autism Spectrum Disorder (ASD) is often underdiagnosed in females due to gender-specific symptom differences overlooked by conventional diagnostics. This study evaluates machine learning models, particularly Random Forest and convolutional neural networks, for enhancing ASD diagnosis through structured data and facial image analysis. Random Forest achieved 100% validation accuracy across datasets, highlighting its ability to manage complex relationships and reduce false negatives, which is crucial for early intervention and addressing gender biases. In image-based analysis, MobileNet outperformed the baseline CNN, achieving 87% accuracy, though a 30% validation loss suggests possible overfitting, requiring further optimization for robustness in clinical settings. Future work will emphasize hyperparameter tuning, regularization, and transfer learning. Integrating behavioral data with facial analysis could improve diagnosis for underdiagnosed groups. These findings suggest Random Forest's high accuracy and balanced precision-recall metrics could enhance clinical workflows. MobileNet's lightweight structure also shows promise for resource-limited environments, enabling accessible ASD screening. Addressing model explainability and clinician trust will be vital.
Abstract:Federated Learning (FL) represents a paradigm shift in machine learning, allowing collaborative model training while keeping data localized. This approach is particularly pertinent in the Industrial Internet of Things (IIoT) context, where data privacy, security, and efficient utilization of distributed resources are paramount. The essence of FL in IIoT lies in its ability to learn from diverse, distributed data sources without requiring central data storage, thus enhancing privacy and reducing communication overheads. However, despite its potential, several challenges impede the widespread adoption of FL in IIoT, notably in ensuring interpretability and robustness. This article focuses on enabling trustworthy FL in IIoT by bridging the gap between interpretability and robustness, which is crucial for enhancing trust, improving decision-making, and ensuring compliance with regulations. Moreover, the design strategies summarized in this article ensure that FL systems in IIoT are transparent and reliable, vital in industrial settings where decisions have significant safety and economic impacts. The case studies in the IIoT environment driven by trustworthy FL models are provided, wherein the practical insights of trustworthy communications between IIoT systems and their end users are highlighted.
Abstract:The rapid growth of the stock market has attracted many investors due to its potential for significant profits. However, predicting stock prices accurately is difficult because financial markets are complex and constantly changing. This is especially true for the cryptocurrency market, which is known for its extreme volatility, making it challenging for traders and investors to make wise and profitable decisions. This study introduces a machine learning approach to predict cryptocurrency prices. Specifically, we make use of important technical indicators such as Exponential Moving Average (EMA) and Moving Average Convergence Divergence (MACD) to train and feed the XGBoost regressor model. We demonstrate our approach through an analysis focusing on the closing prices of Bitcoin cryptocurrency. We evaluate the model's performance through various simulations, showing promising results that suggest its usefulness in aiding/guiding cryptocurrency traders and investors in dynamic market conditions.
Abstract:Distributed Denial of Service (DDoS) attacks pose an increasingly substantial cybersecurity threat to organizations across the globe. In this paper, we introduce a new deep learning-based technique for detecting DDoS attacks, a paramount cybersecurity challenge with evolving complexity and scale. Specifically, we propose a new dual-space prototypical network that leverages a unique dual-space loss function to enhance detection accuracy for various attack patterns through geometric and angular similarity measures. This approach capitalizes on the strengths of representation learning within the latent space (a lower-dimensional representation of data that captures complex patterns for machine learning analysis), improving the model's adaptability and sensitivity towards varying DDoS attack vectors. Our comprehensive evaluation spans multiple training environments, including offline training, simulated online training, and prototypical network scenarios, to validate the model's robustness under diverse data abundance and scarcity conditions. The Multilayer Perceptron (MLP) with Attention, trained with our dual-space prototypical design over a reduced training set, achieves an average accuracy of 94.85% and an F1-Score of 94.71% across our tests, showcasing its effectiveness in dynamic and constrained real-world scenarios.
Abstract:Distributed Denial of Service (DDoS) attacks pose a significant threat to the stability and reliability of online systems. Effective and early detection of such attacks is pivotal for safeguarding the integrity of networks. In this work, we introduce an enhanced approach for DDoS attack detection by leveraging the capabilities of Deep Residual Neural Networks (ResNets) coupled with synthetic oversampling techniques. Because of the inherent class imbalance in many cyber-security datasets, conventional methods often struggle with false negatives, misclassifying subtle DDoS patterns as benign. By applying the Synthetic Minority Over-sampling Technique (SMOTE) to the CICIDS dataset, we balance the representation of benign and malicious data points, enabling the model to better discern intricate patterns indicative of an attack. Our deep residual network, tailored for this specific task, further refines the detection process. Experimental results on a real-world dataset demonstrate that our approach achieves an accuracy of 99.98%, significantly outperforming traditional methods. This work underscores the potential of combining advanced data augmentation techniques with deep learning models to bolster cyber-security defenses.