Abstract:As AI systems integrate into critical infrastructure, security gaps in AI compliance frameworks demand urgent attention. This paper audits and quantifies security risks in three major AI governance standards: NIST AI RMF 1.0, UK's AI and Data Protection Risk Toolkit, and the EU's ALTAI. Using a novel risk assessment methodology, we develop four key metrics: Risk Severity Index (RSI), Attack Potential Index (AVPI), Compliance-Security Gap Percentage (CSGP), and Root Cause Vulnerability Score (RCVS). Our analysis identifies 136 concerns across the frameworks, exposing significant gaps. NIST fails to address 69.23 percent of identified risks, ALTAI has the highest attack vector vulnerability (AVPI = 0.51) and the ICO Toolkit has the largest compliance-security gap, with 80.00 percent of high-risk concerns remaining unresolved. Root cause analysis highlights under-defined processes (ALTAI RCVS = 033) and weak implementation guidance (NIST and ICO RCVS = 0.25) as critical weaknesses. These findings emphasize the need for stronger, enforceable security controls in AI compliance. We offer targeted recommendations to enhance security posture and bridge the gap between compliance and real-world AI risks.
Abstract:The advancements in autonomous driving technology, coupled with the growing interest from automotive manufacturers and tech companies, suggest a rising adoption of Connected Autonomous Vehicles (CAVs) in the near future. Despite some evidence of higher accident rates in AVs, these incidents tend to result in less severe injuries compared to traditional vehicles due to cooperative safety measures. However, the increased complexity of CAV systems exposes them to significant security vulnerabilities, potentially compromising their performance and communication integrity. This paper contributes by presenting a detailed analysis of existing security frameworks and protocols, focusing on intra- and inter-vehicle communications. We systematically evaluate the effectiveness of these frameworks in addressing known vulnerabilities and propose a set of best practices for enhancing CAV communication security. The paper also provides a comprehensive taxonomy of attack vectors in CAV ecosystems and suggests future research directions for designing more robust security mechanisms. Our key contributions include the development of a new classification system for CAV security threats, the proposal of practical security protocols, and the introduction of use cases that demonstrate how these protocols can be integrated into real-world CAV applications. These insights are crucial for advancing secure CAV adoption and ensuring the safe integration of autonomous vehicles into intelligent transportation systems.