Abstract:Generating calibrated and sharp neural network predictive distributions for regression problems is essential for optimal decision-making in many real-world applications. To address the miscalibration issue of neural networks, various methods have been proposed to improve calibration, including post-hoc methods that adjust predictions after training and regularization methods that act during training. While post-hoc methods have shown better improvement in calibration compared to regularization methods, the post-hoc step is completely independent of model training. We introduce a novel end-to-end model training procedure called Quantile Recalibration Training, integrating post-hoc calibration directly into the training process without additional parameters. We also present a unified algorithm that includes our method and other post-hoc and regularization methods, as particular cases. We demonstrate the performance of our method in a large-scale experiment involving 57 tabular regression datasets, showcasing improved predictive accuracy while maintaining calibration. We also conduct an ablation study to evaluate the significance of different components within our proposed method, as well as an in-depth analysis of the impact of the base model and different hyperparameters on predictive accuracy.
Abstract:Sequences of labeled events observed at irregular intervals in continuous time are ubiquitous across various fields. Temporal Point Processes (TPPs) provide a mathematical framework for modeling these sequences, enabling inferences such as predicting the arrival time of future events and their associated label, called mark. However, due to model misspecification or lack of training data, these probabilistic models may provide a poor approximation of the true, unknown underlying process, with prediction regions extracted from them being unreliable estimates of the underlying uncertainty. This paper develops more reliable methods for uncertainty quantification in neural TPP models via the framework of conformal prediction. A primary objective is to generate a distribution-free joint prediction region for the arrival time and mark, with a finite-sample marginal coverage guarantee. A key challenge is to handle both a strictly positive, continuous response and a categorical response, without distributional assumptions. We first consider a simple but overly conservative approach that combines individual prediction regions for the event arrival time and mark. Then, we introduce a more effective method based on bivariate highest density regions derived from the joint predictive density of event arrival time and mark. By leveraging the dependencies between these two variables, this method exclude unlikely combinations of the two, resulting in sharper prediction regions while still attaining the pre-specified coverage level. We also explore the generation of individual univariate prediction regions for arrival times and marks through conformal regression and classification techniques. Moreover, we investigate the stronger notion of conditional coverage. Finally, through extensive experimentation on both simulated and real-world datasets, we assess the validity and efficiency of these methods.
Abstract:Accurate probabilistic predictions are essential for optimal decision making. While neural network miscalibration has been studied primarily in classification, we investigate this in the less-explored domain of regression. We conduct the largest empirical study to date to assess the probabilistic calibration of neural networks. We also analyze the performance of recalibration, conformal, and regularization methods to enhance probabilistic calibration. Additionally, we introduce novel differentiable recalibration and regularization methods, uncovering new insights into their effectiveness. Our findings reveal that regularization methods offer a favorable tradeoff between calibration and sharpness. Post-hoc methods exhibit superior probabilistic calibration, which we attribute to the finite-sample coverage guarantee of conformal prediction. Furthermore, we demonstrate that quantile recalibration can be considered as a specific case of conformal prediction. Our study is fully reproducible and implemented in a common code base for fair comparisons.