Abstract:Disaster recovery and management present significant challenges, particularly in unstable environments and hard-to-reach terrains. These difficulties can be overcome by employing unmanned aerial vehicles (UAVs) equipped with onboard embedded platforms and camera sensors. In this work, we address the critical need for accurate and timely disaster detection by enabling onboard aerial imagery processing and avoiding connectivity, privacy, and latency issues despite the challenges posed by limited onboard hardware resources. We propose a UAV-assisted edge framework for real-time disaster management, leveraging our proposed model optimized for real-time aerial image classification. The optimization of the model employs post-training quantization techniques. For real-world disaster scenarios, we introduce a novel dataset, DisasterEye, featuring UAV-captured disaster scenes as well as ground-level images taken by individuals on-site. Experimental results demonstrate the effectiveness of our model, achieving high accuracy with reduced inference latency and memory usage on resource-constrained devices. The framework's scalability and adaptability make it a robust solution for real-time disaster detection on resource-limited UAV platforms.
Abstract:Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.