Abstract:Revolutionary sixth-generation wireless communications technologies and applications, notably digital twin networks (DTN), connected autonomous vehicles (CAVs), space-air-ground integrated networks (SAGINs), zero-touch networks, industry 5.0, and healthcare 5.0, are driving next-generation wireless networks (NGWNs). These technologies generate massive data, requiring swift transmission and trillions of device connections, fueling the need for sophisticated next-generation multiple access (NGMA) schemes. NGMA enables massive connectivity in the 6G era, optimizing NGWN operations beyond current multiple access (MA) schemes. This survey showcases non-orthogonal multiple access (NOMA) as NGMA's frontrunner, exploring What has NOMA delivered?, What is NOMA providing?, and What lies ahead?. We present NOMA variants, fundamental operations, and applicability in multi-antenna systems, machine learning, reconfigurable intelligent surfaces (RIS), cognitive radio networks (CRN), integrated sensing and communications (ISAC), terahertz networks, and unmanned aerial vehicles (UAVs). Additionally, we explore NOMA's interplay with state-of-the-art wireless technologies, highlighting its advantages and technical challenges. Finally, we unveil NOMA research trends in the 6G era and provide design recommendations and future perspectives for NOMA as the leading NGMA solution for NGWNs.
Abstract:The internet of things (IoT) based wireless sensor networks (WSNs) face an energy shortage challenge that could be overcome by the novel wireless power transfer (WPT) technology. The combination of WSNs and WPT is known as wireless rechargeable sensor networks (WRSNs), with the charging efficiency and charging scheduling being the primary concerns. Therefore, this paper proposes a probabilistic on-demand charging scheduling for integrated sensing and communication (ISAC)-assisted WRSNs with multiple mobile charging vehicles (MCVs) that addresses three parts. First, it considers the four attributes with their probability distributions to balance the charging load on each MCV. The distributions are residual energy of charging node, distance from MCV to charging node, degree of charging node, and charging node betweenness centrality. Second, it considers the efficient charging factor strategy to partially charge network nodes. Finally, it employs the ISAC concept to efficiently utilize the wireless resources to reduce the traveling cost of each MCV and to avoid the charging conflicts between them. The simulation results show that the proposed protocol outperforms cutting-edge protocols in terms of energy usage efficiency, charging delay, survival rate, and travel distance.