Abstract:Deep neural networks (DNNs) are frequently employed in a variety of computer vision applications. Nowadays, an emerging trend in the current video distribution system is to take advantage of DNN's overfitting properties to perform video resolution upscaling. By splitting videos into chunks and applying a super-resolution (SR) model to overfit each chunk, this scheme of SR models plus video chunks is able to replace traditional video transmission to enhance video quality and transmission efficiency. However, many models and chunks are needed to guarantee high performance, which leads to tremendous overhead on model switching and memory footprints at the user end. To resolve such problems, we propose a Dynamic Deep neural network assisted by a Content-Aware data processing pipeline to reduce the model number down to one (Dy-DCA), which helps promote performance while conserving computational resources. Additionally, to achieve real acceleration on the user end, we designed a framework that optimizes dynamic features (e.g., dynamic shapes, sizes, and control flow) in Dy-DCA to enable a series of compilation optimizations, including fused code generation, static execution planning, etc. By employing such techniques, our method achieves better PSNR and real-time performance (33 FPS) on an off-the-shelf mobile phone. Meanwhile, assisted by our compilation optimization, we achieve a 1.7$\times$ speedup while saving up to 1.61$\times$ memory consumption. Code available in https://github.com/coulsonlee/Dy-DCA-ECCV2024.
Abstract:FlameFinder is a deep metric learning (DML) framework designed to accurately detect flames, even when obscured by smoke, using thermal images from firefighter drones during wildfire monitoring. Traditional RGB cameras struggle in such conditions, but thermal cameras can capture smoke-obscured flame features. However, they lack absolute thermal reference points, leading to false positives.To address this issue, FlameFinder utilizes paired thermal-RGB images for training. By learning latent flame features from smoke-free samples, the model becomes less biased towards relative thermal gradients. In testing, it identifies flames in smoky patches by analyzing their equivalent thermal-domain distribution. This method improves performance using both supervised and distance-based clustering metrics.The framework incorporates a flame segmentation method and a DML-aided detection framework. This includes utilizing center loss (CL), triplet center loss (TCL), and triplet cosine center loss (TCCL) to identify optimal cluster representatives for classification. However, the dominance of center loss over the other losses leads to the model missing features sensitive to them. To address this limitation, an attention mechanism is proposed. This mechanism allows for non-uniform feature contribution, amplifying the critical role of cosine and triplet loss in the DML framework. Additionally, it improves interpretability, class discrimination, and decreases intra-class variance. As a result, the proposed model surpasses the baseline by 4.4% in the FLAME2 dataset and 7% in the FLAME3 dataset for unobscured flame detection accuracy. Moreover, it demonstrates enhanced class separation in obscured scenarios compared to VGG19, ResNet18, and three backbone models tailored for flame detection.
Abstract:Motivated by agility, 3D mobility, and low-risk operation compared to human-operated management systems of autonomous unmanned aerial vehicles (UAVs), this work studies UAV-based active wildfire monitoring where a UAV detects fire incidents in remote areas and tracks the fire frontline. A UAV path planning solution is proposed considering realistic wildfire management missions, where a single low-altitude drone with limited power and flight time is available. Noting the limited field of view of commercial low-altitude UAVs, the problem formulates as a partially observable Markov decision process (POMDP), in which wildfire progression outside the field of view causes inaccurate state representation that prevents the UAV from finding the optimal path to track the fire front in limited time. Common deep reinforcement learning (DRL)-based trajectory planning solutions require diverse drone-recorded wildfire data to generalize pre-trained models to real-time systems, which is not currently available at a diverse and standard scale. To narrow down the gap caused by partial observability in the space of possible policies, a belief-based state representation with broad, extensive simulated data is proposed where the beliefs (i.e., ignition probabilities of different grid areas) are updated using a Bayesian framework for the cells within the field of view. The performance of the proposed solution in terms of the ratio of detected fire cells and monitored ignited area (MIA) is evaluated in a complex fire scenario with multiple rapidly growing fire batches, indicating that the belief state representation outperforms the observation state representation both in fire coverage and the distance to fire frontline.
Abstract:Remote patient monitoring based on wearable single-lead electrocardiogram (ECG) devices has significant potential for enabling the early detection of heart disease, especially in combination with artificial intelligence (AI) approaches for automated heart disease detection. There have been prior studies applying AI approaches based on deep learning for heart disease detection. However, these models are yet to be widely accepted as a reliable aid for clinical diagnostics, in part due to the current black-box perception surrounding many AI algorithms. In particular, there is a need to identify the key features of the ECG signal that contribute toward making an accurate diagnosis, thereby enhancing the interpretability of the model. In the present study, we develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data. A residual network (ResNet) approach is also developed for comparison with the vision transformer approach. These models are applied to the Chapman-Shaoxing dataset to classify atrial fibrillation, as well as another common arrhythmia, sinus bradycardia, and normal sinus rhythm heartbeats. The models enable the identification of the key regions of the heartbeat that determine the resulting classification, and highlight the importance of P-waves and T-waves, as well as heartbeat duration and signal amplitude, in distinguishing normal sinus rhythm from atrial fibrillation and sinus bradycardia.
Abstract:Unmanned aerial vehicles (UAVs) offer a flexible and cost-effective solution for wildfire monitoring. However, their widespread deployment during wildfires has been hindered by a lack of operational guidelines and concerns about potential interference with aircraft systems. Consequently, the progress in developing deep-learning models for wildfire detection and characterization using aerial images is constrained by the limited availability, size, and quality of existing datasets. This paper introduces a solution aimed at enhancing the quality of current aerial wildfire datasets to align with advancements in camera technology. The proposed approach offers a solution to create a comprehensive, standardized large-scale image dataset. This paper presents a pipeline based on CycleGAN to enhance wildfire datasets and a novel fusion method that integrates paired RGB images as attribute conditioning in the generators of both directions, improving the accuracy of the generated images.
Abstract:Early wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems. Autonomous drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology that delivers both high-temporal and detailed spatial resolution, making them valuable assets in the early detection and monitoring of wildfires. However, the limited computation and battery resources of Unmanned Aerial Vehicles (UAVs) pose significant challenges in implementing robust and efficient image classification models. Current works in this domain often operate offline, emphasizing the need for solutions that can perform inference in real time, given the constraints of UAVs. To address these challenges, this paper aims to develop a real-time image classification and fire segmentation model. It presents a comprehensive investigation into hardware acceleration using the Jetson Nano P3450 and the implications of TensorRT, NVIDIA's high-performance deep-learning inference library, on fire classification accuracy and speed. The study includes implementations of Quantization Aware Training (QAT), Automatic Mixed Precision (AMP), and post-training mechanisms, comparing them against the latest baselines for fire segmentation and classification. All experiments utilize the FLAME dataset - an image dataset collected by low-altitude drones during a prescribed forest fire. This work contributes to the ongoing efforts to enable real-time, on-board wildfire detection capabilities for UAVs, addressing speed and the computational and energy constraints of these crucial monitoring systems. The results show a 13% increase in classification speed compared to similar models without hardware optimization. Comparatively, loss and accuracy are within 1.225% of the original values.
Abstract:With emerging applications such as autonomous driving, smart cities, and smart factories, network slicing has become an essential component of 5G and beyond networks as a means of catering to a service-aware network. However, managing different network slices while maintaining quality of services (QoS) is a challenge in a dynamic environment. To address this issue, this paper leverages the heterogeneous experiences of distributed units (DUs) in ORAN systems and introduces a novel approach to ORAN slicing xApp using distributed deep reinforcement learning (DDRL). Additionally, to enhance the decision-making performance of the RL agent, a prediction rApp based on long short-term memory (LSTM) is incorporated to provide additional information from the dynamic environment to the xApp. Simulation results demonstrate significant improvements in network performance, particularly in reducing QoS violations. This emphasizes the importance of using the prediction rApp and distributed actors' information jointly as part of a dynamic xApp.
Abstract:Wildfires have emerged as one of the most destructive natural disasters worldwide, causing catastrophic losses in both human lives and forest wildlife. Recently, the use of Artificial Intelligence (AI) in wildfires, propelled by the integration of Unmanned Aerial Vehicles (UAVs) and deep learning models, has created an unprecedented momentum to implement and develop more effective wildfire management. Although some of the existing survey papers have explored various learning-based approaches, a comprehensive review emphasizing the application of AI-enabled UAV systems and their subsequent impact on multi-stage wildfire management is notably lacking. This survey aims to bridge these gaps by offering a systematic review of the recent state-of-the-art technologies, highlighting the advancements of UAV systems and AI models from pre-fire, through the active-fire stage, to post-fire management. To this aim, we provide an extensive analysis of the existing remote sensing systems with a particular focus on the UAV advancements, device specifications, and sensor technologies relevant to wildfire management. We also examine the pre-fire and post-fire management approaches, including fuel monitoring, prevention strategies, as well as evacuation planning, damage assessment, and operation strategies. Additionally, we review and summarize a wide range of computer vision techniques in active-fire management, with an emphasis on Machine Learning (ML), Reinforcement Learning (RL), and Deep Learning (DL) algorithms for wildfire classification, segmentation, detection, and monitoring tasks. Ultimately, we underscore the substantial advancement in wildfire modeling through the integration of cutting-edge AI techniques and UAV-based data, providing novel insights and enhanced predictive capabilities to understand dynamic wildfire behavior.
Abstract:Modulation recognition is a fundamental task in communication systems as the accurate identification of modulation schemes is essential for reliable signal processing, interference mitigation for coexistent communication technologies, and network optimization. Incorporating deep learning (DL) models into modulation recognition has demonstrated promising results in various scenarios. However, conventional DL models often fall short in online dynamic contexts, particularly in class incremental scenarios where new modulation schemes are encountered during online deployment. Retraining these models on all previously seen modulation schemes is not only time-consuming but may also not be feasible due to storage limitations. On the other hand, training solely on new modulation schemes often results in catastrophic forgetting of previously learned classes. This issue renders DL-based modulation recognition models inapplicable in real-world scenarios because the dynamic nature of communication systems necessitate the effective adaptability to new modulation schemes. This paper addresses this challenge by evaluating the performance of multiple Incremental Learning (IL) algorithms in dynamic modulation recognition scenarios, comparing them against conventional DL-based modulation recognition. Our results demonstrate that modulation recognition frameworks based on IL effectively prevent catastrophic forgetting, enabling models to perform robustly in dynamic scenarios.
Abstract:Unmanned aerial vehicles (UAVs) have become extremely popular for both military and civilian applications due to their ease of deployment, cost-effectiveness, high maneuverability, and availability. Both applications, however, need reliable communication for command and control (C2) and/or data transmission. Utilizing commercial cellular networks for drone communication can enable beyond visual line of sight (BVLOS) operation, high data rate transmission, and secure communication. However, deployment of cellular-connected drones over commercial LTE/5G networks still presents various challenges such as sparse coverage outside urban areas, and interference caused to the network as the UAV is visible to many towers. Commercial 5G networks can offer various features for aerial user equipment (UE) far beyond what LTE could provide by taking advantage of mmWave, flexible numerology, slicing, and the capability of applying AI-based solutions. Limited experimental data is available to investigate the operation of aerial UEs over current, without any modification, commercial 5G networks, particularly in suburban and NON-URBAN areas. In this paper, we perform a comprehensive study of drone communications over the existing low-band and mid-band 5G networks in a suburban area for different velocities and elevations, comparing the performance against that of LTE. It is important to acknowledge that the network examined in this research is primarily designed and optimized to meet the requirements of terrestrial users, and may not adequately address the needs of aerial users. This paper not only reports the Key Performance Indicators (KPIs) compared among all combinations of the test cases but also provides recommendations for aerial users to enhance their communication quality by controlling their trajectory.