Abstract:The increasing accessibility of radiometric thermal imaging sensors for unmanned aerial vehicles (UAVs) offers significant potential for advancing AI-driven aerial wildfire management. Radiometric imaging provides per-pixel temperature estimates, a valuable improvement over non-radiometric data that requires irradiance measurements to be converted into visible images using RGB color palettes. Despite its benefits, this technology has been underutilized largely due to a lack of available data for researchers. This study addresses this gap by introducing methods for collecting and processing synchronized visual spectrum and radiometric thermal imagery using UAVs at prescribed fires. The included imagery processing pipeline drastically simplifies and partially automates each step from data collection to neural network input. Further, we present the FLAME 3 dataset, the first comprehensive collection of side-by-side visual spectrum and radiometric thermal imagery of wildland fires. Building on our previous FLAME 1 and FLAME 2 datasets, FLAME 3 includes radiometric thermal Tag Image File Format (TIFFs) and nadir thermal plots, providing a new data type and collection method. This dataset aims to spur a new generation of machine learning models utilizing radiometric thermal imagery, potentially trivializing tasks such as aerial wildfire detection, segmentation, and assessment. A single-burn subset of FLAME 3 for computer vision applications is available on Kaggle with the full 6 burn set available to readers upon request.
Abstract:Unmanned aerial vehicles (UAVs) have become extremely popular for both military and civilian applications due to their ease of deployment, cost-effectiveness, high maneuverability, and availability. Both applications, however, need reliable communication for command and control (C2) and/or data transmission. Utilizing commercial cellular networks for drone communication can enable beyond visual line of sight (BVLOS) operation, high data rate transmission, and secure communication. However, deployment of cellular-connected drones over commercial LTE/5G networks still presents various challenges such as sparse coverage outside urban areas, and interference caused to the network as the UAV is visible to many towers. Commercial 5G networks can offer various features for aerial user equipment (UE) far beyond what LTE could provide by taking advantage of mmWave, flexible numerology, slicing, and the capability of applying AI-based solutions. Limited experimental data is available to investigate the operation of aerial UEs over current, without any modification, commercial 5G networks, particularly in suburban and NON-URBAN areas. In this paper, we perform a comprehensive study of drone communications over the existing low-band and mid-band 5G networks in a suburban area for different velocities and elevations, comparing the performance against that of LTE. It is important to acknowledge that the network examined in this research is primarily designed and optimized to meet the requirements of terrestrial users, and may not adequately address the needs of aerial users. This paper not only reports the Key Performance Indicators (KPIs) compared among all combinations of the test cases but also provides recommendations for aerial users to enhance their communication quality by controlling their trajectory.