Abstract:Pre-trained Vision-language (VL) models, such as CLIP, have shown significant generalization ability to downstream tasks, even with minimal fine-tuning. While prompt learning has emerged as an effective strategy to adapt pre-trained VL models for downstream tasks, current approaches frequently encounter severe overfitting to specific downstream data distributions. This overfitting constrains the original behavior of the VL models to generalize to new domains or unseen classes, posing a critical challenge in enhancing the adaptability and generalization of VL models. To address this limitation, we propose Style-Pro, a novel style-guided prompt learning framework that mitigates overfitting and preserves the zero-shot generalization capabilities of CLIP. Style-Pro employs learnable style bases to synthesize diverse distribution shifts, guided by two specialized loss functions that ensure style diversity and content integrity. Then, to minimize discrepancies between unseen domains and the source domain, Style-Pro maps the unseen styles into the known style representation space as a weighted combination of style bases. Moreover, to maintain consistency between the style-shifted prompted model and the original frozen CLIP, Style-Pro introduces consistency constraints to preserve alignment in the learned embeddings, minimizing deviation during adaptation to downstream tasks. Extensive experiments across 11 benchmark datasets demonstrate the effectiveness of Style-Pro, consistently surpassing state-of-the-art methods in various settings, including base-to-new generalization, cross-dataset transfer, and domain generalization.
Abstract:Recent advancements in anomaly detection have shifted focus towards Multi-class Unified Anomaly Detection (MUAD), offering more scalable and practical alternatives compared to traditional one-class-one-model approaches. However, existing MUAD methods often suffer from inter-class interference and are highly susceptible to domain shifts, leading to substantial performance degradation in real-world applications. In this paper, we propose a novel robust prompt-driven MUAD framework, called ROADS, to address these challenges. ROADS employs a hierarchical class-aware prompt integration mechanism that dynamically encodes class-specific information into our anomaly detector to mitigate interference among anomaly classes. Additionally, ROADS incorporates a domain adapter to enhance robustness against domain shifts by learning domain-invariant representations. Extensive experiments on MVTec-AD and VISA datasets demonstrate that ROADS surpasses state-of-the-art methods in both anomaly detection and localization, with notable improvements in out-of-distribution settings.
Abstract:Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gender, and baldness even in dealing with low-quality images. In this paper, we propose a novel multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this end, we propose a cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network to learn a unified quality-invariant feature representation in unconstrained environments. We conduct extensive experiments on various FR benchmarks varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.
Abstract:Though recent studies have made significant progress in morph attack detection by virtue of deep neural networks, they often fail to generalize well to unseen morph attacks. With numerous morph attacks emerging frequently, generalizable morph attack detection has gained significant attention. This paper focuses on enhancing the generalization capability of morph attack detection from the perspective of consistency regularization. Consistency regularization operates under the premise that generalizable morph attack detection should output consistent predictions irrespective of the possible variations that may occur in the input space. In this work, to reach this objective, two simple yet effective morph-wise augmentations are proposed to explore a wide space of realistic morph transformations in our consistency regularization. Then, the model is regularized to learn consistently at the logit as well as embedding levels across a wide range of morph-wise augmented images. The proposed consistency regularization aligns the abstraction in the hidden layers of our model across the morph attack images which are generated from diverse domains in the wild. Experimental results demonstrate the superior generalization and robustness performance of our proposed method compared to the state-of-the-art studies.
Abstract:In this paper, we present a new multi-branch neural network that simultaneously performs soft biometric (SB) prediction as an auxiliary modality and face recognition (FR) as the main task. Our proposed network named AAFace utilizes SB attributes to enhance the discriminative ability of FR representation. To achieve this goal, we propose an attribute-aware attentional integration (AAI) module to perform weighted integration of FR with SB feature maps. Our proposed AAI module is not only fully context-aware but also capable of learning complex relationships between input features by means of the sequential multi-scale channel and spatial sub-modules. Experimental results verify the superiority of our proposed network compared with the state-of-the-art (SoTA) SB prediction and FR methods.