This paper investigates the resource allocation design for a pinching antenna (PA)-assisted multiuser multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) system featuring multiple dielectric waveguides. To enhance model accuracy, we propose a novel frequency-dependent power attenuation model for dielectric waveguides in PA-assisted systems. By jointly optimizing the precoder vector and the PA placement, we aim to maximize the system's sum-rate while accounting for the power attenuation across dielectric waveguides. The design is formulated as a non-convex optimization problem. To effectively address the problem at hand, we introduce an alternating optimization-based algorithm to obtain a suboptimal solution in polynomial time. Our results demonstrate that the proposed PA-assisted system not only significantly outperforms the conventional system but also surpasses a naive PA-assisted system that disregards power attenuation. The performance gain compared to the naive PA-assisted system becomes more pronounced at high carrier frequencies, emphasizing the importance of considering power attenuation in system design.