Abstract:This paper investigates the resource allocation design for a pinching antenna (PA)-assisted multiuser multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) system featuring multiple dielectric waveguides. To enhance model accuracy, we propose a novel frequency-dependent power attenuation model for dielectric waveguides in PA-assisted systems. By jointly optimizing the precoder vector and the PA placement, we aim to maximize the system's sum-rate while accounting for the power attenuation across dielectric waveguides. The design is formulated as a non-convex optimization problem. To effectively address the problem at hand, we introduce an alternating optimization-based algorithm to obtain a suboptimal solution in polynomial time. Our results demonstrate that the proposed PA-assisted system not only significantly outperforms the conventional system but also surpasses a naive PA-assisted system that disregards power attenuation. The performance gain compared to the naive PA-assisted system becomes more pronounced at high carrier frequencies, emphasizing the importance of considering power attenuation in system design.
Abstract:This paper investigates the design of self-connected spatially coupled low-density parity-check (SC-LDPC) codes. First, a termination method is proposed to reduce rate loss. Particularly, a single-side open SC-LDPC ensemble is introduced, which halves the rate loss of a conventional terminated SC-LDPC by reducing the number of check nodes. We further propose a self-connection method that allows reliable information to propagate from several directions to improve the decoding threshold. We demonstrate that the proposed ensembles not only achieve a better trade-off between rate loss and gap to capacity than several existing protograph SC-LDPC codes with short chain lengths but also exhibit threshold saturation behavior. Finite blocklength error performance is provided to exemplify the superiority of the proposed codes over conventional protograph SC-LDPC codes.
Abstract:Delayed bit-interleaved coded modulation (DBICM) generalizes bit-interleaved coded modulation (BICM) by modulating differently delayed sub-blocks of codewords onto the same signals. DBICM improves transmission reliability over BICM due to its capability of detecting undelayed sub-blocks with the extrinsic information of the decoded delayed sub-blocks. In this work, we propose a novel windowed decoding algorithm for DBICM, which uses the extrinsic information of both the decoded delayed and undelayed sub-blocks, to improve the detection on all sub-blocks. Numerical results show that the proposed windowed decoding significantly outperforms the original decoding.
Abstract:This paper investigates the design of spatially coupled low-density parity-check (SC-LDPC) codes constructed from connected-chain ensembles for bit-interleaved coded modulation (BICM) schemes. For short coupling lengths, connecting multiple SC-LDPC chains can improve decoding performance over single-chains and impose structured unequal error protection (UEP). A joint design of connected-chain ensembles and bit mapping to further exploit the UEP from codes and high-order modulations is proposed. Numerical results demonstrate the superiority of the proposed design over existing connected-chain ensembles and over single-chain ensembles with existing bit mapping design.