Abstract:As our cities become more intelligent and more connected with new technologies like 6G, improving communication between vehicles and infrastructure is essential while reducing energy consumption. This study proposes a secure framework for vehicle-to-infrastructure (V2I) backscattering near an eavesdropping vehicle to maximize the sum secrecy rate of V2I backscatter communication over multiple coherence slots. This sustainable framework aims to jointly optimize the reflection coefficients at the backscattering vehicle, carrier emitter power, and artificial noise at the infrastructure, along with the target vehicle's linear trajectory in the presence of an eavesdropping vehicle in the parallel lane. To achieve this optimization, we separated the problem into three parts: backscattering coefficient, power allocation, and trajectory design problems. We respectively adopted parallel computing, fractional programming, and finding all the candidates for the global optimal solution to obtain the global optimal solution for these three problems. Our simulations verified the fast convergence of our alternating optimization algorithm and showed that our proposed secure V2I backscattering outperforms the existing benchmark by over 4.7 times in terms of secrecy rate for 50 slots. Overall, this fundamental research on V2I backscattering provided insights to improve vehicular communication's connectivity, efficiency, and security.