Abstract:Thoracic trauma often results in rib fractures, which demand swift and accurate diagnosis for effective treatment. However, detecting these fractures on rib CT scans poses considerable challenges, involving the analysis of many image slices in sequence. Despite notable advancements in algorithms for automated fracture segmentation, the persisting challenges stem from the diverse shapes and sizes of these fractures. To address these issues, this study introduces a sophisticated deep-learning model with an auxiliary classification task designed to enhance the accuracy of rib fracture segmentation. The auxiliary classification task is crucial in distinguishing between fractured ribs and negative regions, encompassing non-fractured ribs and surrounding tissues, from the patches obtained from CT scans. By leveraging this auxiliary task, the model aims to improve feature representation at the bottleneck layer by highlighting the regions of interest. Experimental results on the RibFrac dataset demonstrate significant improvement in segmentation performance.
Abstract:The recovery of damaged or resected ribcage structures requires precise, custom-designed implants to restore the integrity and functionality of the thoracic cavity. Traditional implant design methods rely mainly on manual processes, making them time-consuming and susceptible to variability. In this work, we explore the feasibility of automated ribcage implant generation using deep learning. We present a framework based on 3D U-Net architecture that processes CT scans to generate patient-specific implant designs. To the best of our knowledge, this is the first investigation into automated thoracic implant generation using deep learning approaches. Our preliminary results, while moderate, highlight both the potential and the significant challenges in this complex domain. These findings establish a foundation for future research in automated ribcage reconstruction and identify key technical challenges that need to be addressed for practical implementation.
Abstract:Accurate survival prediction in head and neck cancer (HNC) is essential for guiding clinical decision-making and optimizing treatment strategies. Traditional models, such as Cox proportional hazards, have been widely used but are limited in their ability to handle complex multi-modal data. This paper proposes a deep learning-based approach leveraging CT and PET imaging modalities to predict survival outcomes in HNC patients. Our method integrates feature extraction with a Convolutional Block Attention Module (CBAM) and a multi-modal data fusion layer that combines imaging data to generate a compact feature representation. The final prediction is achieved through a fully parametric discrete-time survival model, allowing for flexible hazard functions that overcome the limitations of traditional survival models. We evaluated our approach using the HECKTOR and HEAD-NECK-RADIOMICS- HN1 datasets, demonstrating its superior performance compared to conconventional statistical and machine learning models. The results indicate that our deep learning model significantly improves survival prediction accuracy, offering a robust tool for personalized treatment planning in HNC
Abstract:Survival prediction is a crucial task associated with cancer diagnosis and treatment planning. This paper presents a novel approach to survival prediction by harnessing comprehensive information from CT and PET scans, along with associated Genomic data. Current methods rely on either a single modality or the integration of multiple modalities for prediction without adequately addressing associations across patients or modalities. We aim to develop a robust predictive model for survival outcomes by integrating multi-modal imaging data with genetic information while accounting for associations across patients and modalities. We learn representations for each modality via a self-supervised module and harness the semantic similarities across the patients to ensure the embeddings are aligned closely. However, optimizing solely for global relevance is inadequate, as many pairs sharing similar high-level semantics, such as tumor type, are inadvertently pushed apart in the embedding space. To address this issue, we use a cross-patient module (CPM) designed to harness inter-subject correspondences. The CPM module aims to bring together embeddings from patients with similar disease characteristics. Our experimental evaluation of the dataset of Non-Small Cell Lung Cancer (NSCLC) patients demonstrates the effectiveness of our approach in predicting survival outcomes, outperforming state-of-the-art methods.
Abstract:Indoor humidity is a crucial factor affecting people's health and well-being. Wireless humidity sensing techniques are scalable and low-cost, making them a promising solution for measuring humidity in indoor environments without requiring additional devices. Such, machine learning (ML) assisted WiFi sensing is being envisioned as the key enabler for integrated sensing and communication (ISAC). However, the current WiFi-based sensing systems, such as WiHumidity, suffer from low accuracy. We propose an enhanced WiFi-based humidity detection framework to address this issue that utilizes innovative filtering and data processing techniques to exploit humidity-specific channel state information (CSI) signatures during RF sensing. These signals are then fed into ML algorithms for detecting different humidity levels. Specifically, our improved de-noising solution for the CSI captured by commodity hardware for WiFi sensing, combined with the k-th nearest neighbour ML algorithm and resolution tuning technique, helps improve humidity sensing accuracy. Our commercially available hardware-based experiments provide insights into achievable sensing resolution. Our empirical investigation shows that our enhanced framework can improve the accuracy of humidity sensing to 97%.
Abstract:Euclidean deep learning is often inadequate for addressing real-world signals where the representation space is irregular and curved with complex topologies. Interpreting the geometric properties of such feature spaces has become paramount in obtaining robust and compact feature representations that remain unaffected by nontrivial geometric transformations, which vanilla CNNs cannot effectively handle. Recognizing rotation, translation, permutation, or scale symmetries can lead to equivariance properties in the learned representations. This has led to notable advancements in computer vision and machine learning tasks under the framework of geometric deep learning, as compared to their invariant counterparts. In this report, we emphasize the importance of symmetry group equivariant deep learning models and their realization of convolution-like operations on graphs, 3D shapes, and non-Euclidean spaces by leveraging group theory and symmetry. We categorize them as regular, steerable, and PDE-based convolutions and thoroughly examine the inherent symmetries of their input spaces and ensuing representations. We also outline the mathematical link between group convolutions or message aggregation operations and the concept of equivariance. The report also highlights various datasets, their application scopes, limitations, and insightful observations on future directions to serve as a valuable reference and stimulate further research in this emerging discipline.
Abstract:Recent progress in image deblurring techniques focuses mainly on operating in both frequency and spatial domains using the Fourier transform (FT) properties. However, their performance is limited due to the dependency of FT on stationary signals and its lack of capability to extract spatial-frequency properties. In this paper, we propose a novel approach based on the Fractional Fourier Transform (FRFT), a unified spatial-frequency representation leveraging both spatial and frequency components simultaneously, making it ideal for processing non-stationary signals like images. Specifically, we introduce a Fractional Fourier Transformer (F2former), where we combine the classical fractional Fourier based Wiener deconvolution (F2WD) as well as a multi-branch encoder-decoder transformer based on a new fractional frequency aware transformer block (F2TB). We design F2TB consisting of a fractional frequency aware self-attention (F2SA) to estimate element-wise product attention based on important frequency components and a novel feed-forward network based on frequency division multiplexing (FM-FFN) to refine high and low frequency features separately for efficient latent clear image restoration. Experimental results for the cases of both motion deblurring as well as defocus deblurring show that the performance of our proposed method is superior to other state-of-the-art (SOTA) approaches.
Abstract:Self-supervised learning (SSL) has emerged as a promising paradigm for medical image analysis by harnessing unannotated data. Despite their potential, the existing SSL approaches overlook the high anatomical similarity inherent in medical images. This makes it challenging for SSL methods to capture diverse semantic content in medical images consistently. This work introduces a novel and generalized solution that implicitly exploits anatomical similarities by integrating codebooks in SSL. The codebook serves as a concise and informative dictionary of visual patterns, which not only aids in capturing nuanced anatomical details but also facilitates the creation of robust and generalized feature representations. In this context, we propose CoBooM, a novel framework for self-supervised medical image learning by integrating continuous and discrete representations. The continuous component ensures the preservation of fine-grained details, while the discrete aspect facilitates coarse-grained feature extraction through the structured embedding space. To understand the effectiveness of CoBooM, we conduct a comprehensive evaluation of various medical datasets encompassing chest X-rays and fundus images. The experimental results reveal a significant performance gain in classification and segmentation tasks.
Abstract:In this study, we present a novel approach for predicting genomic information from medical imaging modalities using a transformer-based model. We aim to bridge the gap between imaging and genomics data by leveraging transformer networks, allowing for accurate genomic profile predictions from CT/MRI images. Presently most studies rely on the use of whole slide images (WSI) for the association, which are obtained via invasive methodologies. We propose using only available CT/MRI images to predict genomic sequences. Our transformer based approach is able to efficiently generate associations between multiple sequences based on CT/MRI images alone. This work paves the way for the use of non-invasive imaging modalities for precise and personalized healthcare, allowing for a better understanding of diseases and treatment.
Abstract:As our cities become more intelligent and more connected with new technologies like 6G, improving communication between vehicles and infrastructure is essential while reducing energy consumption. This study proposes a secure framework for vehicle-to-infrastructure (V2I) backscattering near an eavesdropping vehicle to maximize the sum secrecy rate of V2I backscatter communication over multiple coherence slots. This sustainable framework aims to jointly optimize the reflection coefficients at the backscattering vehicle, carrier emitter power, and artificial noise at the infrastructure, along with the target vehicle's linear trajectory in the presence of an eavesdropping vehicle in the parallel lane. To achieve this optimization, we separated the problem into three parts: backscattering coefficient, power allocation, and trajectory design problems. We respectively adopted parallel computing, fractional programming, and finding all the candidates for the global optimal solution to obtain the global optimal solution for these three problems. Our simulations verified the fast convergence of our alternating optimization algorithm and showed that our proposed secure V2I backscattering outperforms the existing benchmark by over 4.7 times in terms of secrecy rate for 50 slots. Overall, this fundamental research on V2I backscattering provided insights to improve vehicular communication's connectivity, efficiency, and security.