Abstract:NP-hard problem-solving traditionally relies on heuristics, but manually crafting effective heuristics for complex problems remains challenging. While recent work like FunSearch has demonstrated that large language models (LLMs) can be leveraged for heuristic design in evolutionary algorithm (EA) frameworks, their potential is not fully realized due to its deficiency in exploitation and exploration. We present UBER (Uncertainty-Based Evolution for Refinement), a method that enhances LLM+EA methods for automatic heuristic design by integrating uncertainty on top of the FunSearch framework. UBER introduces two key innovations: an Uncertainty-Inclusive Evolution Process (UIEP) for adaptive exploration-exploitation balance, and a principled Uncertainty-Inclusive Island Reset (UIIS) strategy for maintaining population diversity. Through extensive experiments on challenging NP-complete problems, UBER demonstrates significant improvements over FunSearch. Our work provides a new direction for the synergy of LLMs and EA, advancing the field of automatic heuristic design.
Abstract:Reconfigurable intelligent surfaces (RIS)-assisted cell-free massive multiple-input multiple-output (CF mMIMO) systems have emerged as a promising technology for sixth-generation communication systems. These systems capitalize on RIS to minimize power consumption, thereby achieving consistent performance and enhancing communication quality through the establishment and shaping of auxiliary signal propagation pathways between access points (APs) and users. However, integrating RIS into existing CF mMIMO infrastructures presents several technical challenges. This study delves into the signal transmission scheme and deployment architecture of RIS-aided CF mMIMO systems, addressing inherent challenges such as interference induced by RIS and the increased complexity in beam alignment. Furthermore, we address the complexities arising from the joint optimization of the reflection phase of RIS and beamforming technology at the APs, intending to fully exploit the reflection capabilities of RISs and beamforming technology to maximize the energy efficiency (EE) of the system. To overcome these challenges, we propose cooperation communication to suppress RIS-induced interference, beam tracking, and joint optimization to improve system EE. We also present specific examples of cooperative communication under the constraint of electromagnetic interference and the beam tracking of a mobile system. Additionally, we emphasize important research directions for RIS-aided CF mMIMO systems, aiming to inspire future investigations.
Abstract:Understanding the emotions in a dialogue usually requires external knowledge to accurately understand the contents. As the LLMs become more and more powerful, we do not want to settle on the limited ability of the pre-trained language model. However, the LLMs either can only process text modality or are too expensive to process the multimedia information. We aim to utilize both the power of LLMs and the supplementary features from the multimedia modalities. In this paper, we present a framework, Lantern, that can improve the performance of a certain vanilla model by prompting large language models with receptive-field-aware attention weighting. This framework trained a multi-task vanilla model to produce probabilities of emotion classes and dimension scores. These predictions are fed into the LLMs as references to adjust the predicted probabilities of each emotion class with its external knowledge and contextual understanding. We slice the dialogue into different receptive fields, and each sample is included in exactly t receptive fields. Finally, the predictions of LLMs are merged with a receptive-field-aware attention-driven weighting module. In the experiments, vanilla models CORECT and SDT are deployed in Lantern with GPT-4 or Llama-3.1-405B. The experiments in IEMOCAP with 4-way and 6-way settings demonstrated that the Lantern can significantly improve the performance of current vanilla models by up to 1.23% and 1.80%.
Abstract:In recent years, multimodal benchmarks for general domains have guided the rapid development of multimodal models on general tasks. However, the financial field has its peculiarities. It features unique graphical images (e.g., candlestick charts, technical indicator charts) and possesses a wealth of specialized financial knowledge (e.g., futures, turnover rate). Therefore, benchmarks from general fields often fail to measure the performance of multimodal models in the financial domain, and thus cannot effectively guide the rapid development of large financial models. To promote the development of large financial multimodal models, we propose MME-Finance, an bilingual open-ended and practical usage-oriented Visual Question Answering (VQA) benchmark. The characteristics of our benchmark are finance and expertise, which include constructing charts that reflect the actual usage needs of users (e.g., computer screenshots and mobile photography), creating questions according to the preferences in financial domain inquiries, and annotating questions by experts with 10+ years of experience in the financial industry. Additionally, we have developed a custom-designed financial evaluation system in which visual information is first introduced in the multi-modal evaluation process. Extensive experimental evaluations of 19 mainstream MLLMs are conducted to test their perception, reasoning, and cognition capabilities. The results indicate that models performing well on general benchmarks cannot do well on MME-Finance; for instance, the top-performing open-source and closed-source models obtain 65.69 (Qwen2VL-72B) and 63.18 (GPT-4o), respectively. Their performance is particularly poor in categories most relevant to finance, such as candlestick charts and technical indicator charts. In addition, we propose a Chinese version, which helps compare performance of MLLMs under a Chinese context.
Abstract:Scientific innovation is pivotal for humanity, and harnessing large language models (LLMs) to generate research ideas could transform discovery. However, existing LLMs often produce simplistic and repetitive suggestions due to their limited ability in acquiring external knowledge for innovation. To address this problem, we introduce an enhanced planning and search methodology designed to boost the creative potential of LLM-based systems. Our approach involves an iterative process to purposely plan the retrieval of external knowledge, progressively enriching the idea generation with broader and deeper insights. Validation through automated and human assessments indicates that our framework substantially elevates the quality of generated ideas, particularly in novelty and diversity. The number of unique novel ideas produced by our framework is 3.4 times higher than without it. Moreover, our method outperforms the current state-of-the-art, generating at least 2.5 times more top-rated ideas based on 170 seed papers in a Swiss Tournament evaluation.
Abstract:Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user's relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user's overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, \ours{}. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches.
Abstract:The negative binomial model, which generalizes the Poisson distribution model, can be found in applications involving low-photon signal recovery, including medical imaging. Recent studies have explored several regularization terms for the negative binomial model, such as the $\ell_p$ quasi-norm with $0 < p < 1$, $\ell_1$ norm, and the total variation (TV) quasi-seminorm for promoting sparsity in signal recovery. These penalty terms have been shown to improve image reconstruction outcomes. In this paper, we investigate the $\ell_p$ quasi-seminorm, both isotropic and anisotropic $\ell_p$ TV quasi-seminorms, within the framework of the negative binomial statistical model. This problem can be formulated as an optimization problem, which we solve using a gradient-based approach. We present comparisons between the negative binomial and Poisson statistical models using the $\ell_p$ TV quasi-seminorm as well as common penalty terms. Our experimental results highlight the efficacy of the proposed method.
Abstract:Matrix completion focuses on recovering missing or incomplete information in matrices. This problem arises in various applications, including image processing and network analysis. Previous research proposed Poisson matrix completion for count data with noise that follows a Poisson distribution, which assumes that the mean and variance are equal. Since overdispersed count data, whose variance is greater than the mean, is more likely to occur in realistic settings, we assume that the noise follows the negative binomial (NB) distribution, which can be more general than the Poisson distribution. In this paper, we introduce NB matrix completion by proposing a nuclear-norm regularized model that can be solved by proximal gradient descent. In our experiments, we demonstrate that the NB model outperforms Poisson matrix completion in various noise and missing data settings on real data.
Abstract:Textile pilling assessment is critical for textile quality control. We collect thousands of 3D point cloud images in the actual test environment of textiles and organize and label them as TextileNet8 dataset. To the best of our knowledge, it is the first publicly available eight-categories 3D point cloud dataset in the field of textile pilling assessment. Based on PointGPT, the GPT-like big model of point cloud analysis, we incorporate the global features of the input point cloud extracted from the non-parametric network into it, thus proposing the PointGPT+NN model. Using TextileNet8 as a benchmark, the experimental results show that the proposed PointGPT+NN model achieves an overall accuracy (OA) of 91.8% and a mean per-class accuracy (mAcc) of 92.2%. Test results on other publicly available datasets also validate the competitive performance of the proposed PointGPT+NN model. The proposed TextileNet8 dataset will be publicly available.
Abstract:Benefiting from the strong reasoning capabilities, Large language models (LLMs) have demonstrated remarkable performance in recommender systems. Various efforts have been made to distill knowledge from LLMs to enhance collaborative models, employing techniques like contrastive learning for representation alignment. In this work, we prove that directly aligning the representations of LLMs and collaborative models is sub-optimal for enhancing downstream recommendation tasks performance, based on the information theorem. Consequently, the challenge of effectively aligning semantic representations between collaborative models and LLMs remains unresolved. Inspired by this viewpoint, we propose a novel plug-and-play alignment framework for LLMs and collaborative models. Specifically, we first disentangle the latent representations of both LLMs and collaborative models into specific and shared components via projection layers and representation regularization. Subsequently, we perform both global and local structure alignment on the shared representations to facilitate knowledge transfer. Additionally, we theoretically prove that the specific and shared representations contain more pertinent and less irrelevant information, which can enhance the effectiveness of downstream recommendation tasks. Extensive experimental results on benchmark datasets demonstrate that our method is superior to existing state-of-the-art algorithms.