Abstract:The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.
Abstract:The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such a problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing scalability and performance. In this paper, we propose an instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. Besides, we propose the region-guided regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. Our method is so concise and efficient that it is easy to be generalized to other unsupervised domain adaptation methods. Experiments on 'GTA5 to Cityscapes' and 'SYNTHIA to Cityscapes' demonstrate the superior performance of our approach compared with the state-of-the-art methods.
Abstract:Image retrieval is a fundamental problem in computer vision. This paper presents our 3rd place detailed solution to the Google Landmark Retrieval 2020 challenge. We focus on the exploration of data cleaning and models with metric learning. We use a data cleaning strategy based on embedding clustering. Besides, we employ a data augmentation method called Corner-Cutmix, which improves the model's ability to recognize multi-scale and occluded landmark images. We show in detail the ablation experiments and results of our method.
Abstract:The automatic and objective medical diagnostic model can be valuable to achieve early cancer detection, and thus reducing the mortality rate. In this paper, we propose a highly efficient multi-level malignant tissue detection through the designed adversarial CAC-UNet. A patch-level model with a pre-prediction strategy and a malignancy area guided label smoothing is adopted to remove the negative WSIs, with which to lower the risk of false positive detection. For the selected key patches by multi-model ensemble, an adversarial context-aware and appearance consistency UNet (CAC-UNet) is designed to achieve robust segmentation. In CAC-UNet, mirror designed discriminators are able to seamlessly fuse the whole feature maps of the skillfully designed powerful backbone network without any information loss. Besides, a mask prior is further added to guide the accurate segmentation mask prediction through an extra mask-domain discriminator. The proposed scheme achieves the best results in MICCAI DigestPath2019 challenge on colonoscopy tissue segmentation and classification task. The full implementation details and the trained models are available at https://github.com/Raykoooo/CAC-UNet.
Abstract:Segmentation from renal pathological images is a key step in automatic analyzing the renal histological characteristics. However, the performance of models varies significantly in different types of stained datasets due to the appearance variations. In this paper, we design a robust and flexible model for cross-stained segmentation. It is a novel multi-level deep adversarial network architecture that consists of three sub-networks: (i) a segmentation network; (ii) a pair of multi-level mirrored discriminators for guiding the segmentation network to extract domain-invariant features; (iii) a shape discriminator that is utilized to further identify the output of the segmentation network and the ground truth. Experimental results on glomeruli segmentation from renal biopsy images indicate that our network is able to improve segmentation performance on target type of stained images and use unlabeled data to achieve similar accuracy to labeled data. In addition, this method can be easily applied to other tasks.