Sherman
Abstract:In recent years, high-speed trains (HSTs) communications have developed rapidly to enhance the stability of train operations and improve passenger connectivity experiences. However, as the train continues to accelerate, urgent technological innovations are needed to overcome challenges such as frequency handover and significant Doppler effects. In this paper, we present a novel architecture featuring movable antennas (MAs) to fully exploit macro spatial diversity, enabling a cell-free (CF) massive multiple-input multiple-output (MIMO) system that supports high-speed train communications. Considering the high likelihood of line-of-sight (LoS) transmission in HST scenario, we derive the uplink spectral efficiency (SE) expression for the movable CF massive MIMO system. Moreover, an optimization problem is formulated to maximize the sum SE of the considered system by optimizing the positions of the antennas. Since the formulated problem is non-convex and highly non-linear, we improve a deep reinforcement learning algorithm to address it by using proximal policy optimization (PPO). Different from traditional optimization approaches, which optimize variables separately and alternately, our improved PPO-based approach optimizes all the variables in unison. Simulation results demonstrate that movable CF massive MIMO effectively suppresses the negative impact of the Doppler effect in HST communications.
Abstract:Manipulating deformable objects like cloth is challenging due to their complex dynamics, near-infinite degrees of freedom, and frequent self-occlusions, which complicate state estimation and dynamics modeling. Prior work has struggled with robust cloth state estimation, while dynamics models, primarily based on Graph Neural Networks (GNNs), are limited by their locality. Inspired by recent advances in generative models, we hypothesize that these expressive models can effectively capture intricate cloth configurations and deformation patterns from data. Building on this insight, we propose a diffusion-based generative approach for both perception and dynamics modeling. Specifically, we formulate state estimation as reconstructing the full cloth state from sparse RGB-D observations conditioned on a canonical cloth mesh and dynamics modeling as predicting future states given the current state and robot actions. Leveraging a transformer-based diffusion model, our method achieves high-fidelity state reconstruction while reducing long-horizon dynamics prediction errors by an order of magnitude compared to GNN-based approaches. Integrated with model-predictive control (MPC), our framework successfully executes cloth folding on a real robotic system, demonstrating the potential of generative models for manipulation tasks with partial observability and complex dynamics.
Abstract:The rapid development of the quantum technology presents huge opportunities for 6G communications. Leveraging the quantum properties of highly excited Rydberg atoms, Rydberg atom-based antennas present distinct advantages, such as high sensitivity, broad frequency range, and compact size, over traditional antennas. To realize efficient precoding, accurate channel state information is essential. However, due to the distinct characteristics of atomic receivers, traditional channel estimation algorithms developed for conventional receivers are no longer applicable. To this end, we propose a novel channel estimation algorithm based on projection gradient descent (PGD), which is applicable to both one-dimensional (1D) and twodimensional (2D) arrays. Simulation results are provided to show the effectiveness of our proposed channel estimation method.
Abstract:Reconfigurable intelligent surface (RIS)-aided cell-free (CF) massive multiple-input multiple-output (mMIMO) is a promising architecture for further improving spectral efficiency (SE) with low cost and power consumption. However, conventional RIS has inevitable limitations due to its capability of only reflecting signals. In contrast, beyond-diagonal RIS (BD-RIS), with its ability to both reflect and transmit signals, has gained great attention. This correspondence focuses on using BD-RIS to improve the sum SE of CF mMIMO systems. This requires completing the beamforming design under the transmit power constraints and unitary constraints of the BD-RIS, by optimizing active and passive beamformer simultaneously. To tackle this issue, we introduce an alternating optimization algorithm that decomposes it using fractional programming and solves the subproblems alternatively. Moreover, to address the challenge introduced by the unitary constraint on the beamforming matrix of the BD-RIS, a manifold optimization algorithm is proposed to solve the problem optimally. Simulation results show that BD-RISs outperform RISs comprehensively, especially in the case of the full connected architecture which achieves the best performance, enhancing the sum SE by around 40% compared to ideal RISs.
Abstract:As the number of antennas in frequency-division duplex (FDD) multiple-input multiple-output (MIMO) systems increases, acquiring channel state information (CSI) becomes increasingly challenging due to limited spectral resources and feedback overhead. In this paper, we propose an end-to-end network that conducts joint design with pilot design, CSI estimation, CSI feedback, and precoding design in the multi-user MIMO orthogonal frequency-division multiplexing (OFDM) scenario. Multiple communication modules are jointly designed and trained with a common optimization objective to prevent mismatches between modules and discrepancies between individual module objectives and the final system goal. Experimental results demonstrate that, under the same feedback and CE overheads, the proposed joint multi-module end-to-end network achieves a higher multi-user downlink spectral efficiency than traditional algorithms based on separate architecture and partially separated artificial intelligence-based network architectures under comparable channel quality. Furthermore, compared to conventional separate architecture, the proposed network architecture with joint architecture reduces the computational burden and model storage overhead at the UE side, facilitating the deployment of low-overhead multi-module joint architectures in practice. While slightly increasing storage requirements at the base station, it reduces computational complexity and precoding design delay, effectively reducing the effects of channel aging challenges.
Abstract:With the advancement of sixth-generation (6G) wireless communication systems, integrated sensing and communication (ISAC) is crucial for perceiving and interacting with the environment via electromagnetic propagation, termed channel semantics, to support tasks like decision-making. However, channel models focusing on physical characteristics face challenges in representing semantics embedded in the channel, thereby limiting the evaluation of ISAC systems. To tackle this, we present a novel framework for channel modeling from the conceptual event perspective. By leveraging a multi-level semantic structure and characterized knowledge libraries, the framework decomposes complex channel characteristics into extensible semantic characterization, thereby better capturing the relationship between environment and channel, and enabling more flexible adjustments of channel models for different events without requiring a complete reset. Specifically, we define channel semantics on three levels: status semantics, behavior semantics, and event semantics, corresponding to channel multipaths, channel time-varying trajectories, and channel topology, respectively. Taking realistic vehicular ISAC scenarios as an example, we perform semantic clustering, characterizing status semantics via multipath statistical distributions, modeling behavior semantics using Markov chains for time variation, and representing event semantics through a co-occurrence matrix. Results show the model accurately generates channels while capturing rich semantic information. Moreover, its generalization supports customized semantics.
Abstract:Cell-free (CF) massive multiple-input multiple-output (mMIMO) systems offer high spectral efficiency (SE) through multiple distributed access points (APs). However, the large number of antennas increases power consumption. We propose incorporating stacked intelligent metasurfaces (SIM) into CF mMIMO systems as a cost-effective, energy-efficient solution. This paper focuses on optimizing the joint power allocation of APs and the phase shift of SIMs to maximize the sum SE. To address this complex problem, we introduce a fully distributed multi-agent reinforcement learning (MARL) algorithm. Our novel algorithm, the noisy value method with a recurrent policy in multi-agent policy optimization (NVR-MAPPO), enhances performance by encouraging diverse exploration under centralized training and decentralized execution. Simulations demonstrate that NVR-MAPPO significantly improves sum SE and robustness across various scenarios.
Abstract:This paper proposes a graph neural network (GNN) enabled power allocation scheme for non-orthogonal multiple access (NOMA) networks. In particular, a downlink scenario with one base station serving multiple users over several subchannels is considered, where the number of subchannels is less than the number of users, and thus, some users have to share a subchannel via NOMA. Our goal is to maximize the system energy efficiency subject to the rate requirement of each user and the overall budget. We propose a deep learning based approach termed NOMA net (NOMANet) to address the considered problem. Particularly, NOMANet is GNN-based, which maps channel state information to the desired power allocation scheme for all subchannels. The multi-head attention and the residual/dense connection are adopted to enhance the feature extraction. The output of NOMANet is guaranteed to be feasible via the customized activation function and the penalty method. Numerical results show that NOMANet trained unsupervised achieves performance close to that of the successive convex approximation method but with a faster inference speed by about $700$ times. Besides, NOMANet is featured by its scalability to both users and subchannels.
Abstract:This paper investigates the graph neural network (GNN)-enabled beamforming design for interference channels. We propose a model termed interference channel GNN (ICGNN) to solve a quality-of-service constrained energy efficiency maximization problem. The ICGNN is two-stage, where the direction and power parts of beamforming vectors are learned separately but trained jointly via unsupervised learning. By formulating the dimensionality of features independent of the transceiver pairs, the ICGNN is scalable with the number of transceiver pairs. Besides, to improve the performance of the ICGNN, the hybrid maximum ratio transmission and zero-forcing scheme reduces the output ports, the feature enhancement module unifies the two types of links into one type, the subgraph representation enhances the message passing efficiency, and the multi-head attention and residual connection facilitate the feature extracting. Furthermore, we present the over-the-air distributed implementation of the ICGNN. Ablation studies validate the effectiveness of key components in the ICGNN. Numerical results also demonstrate the capability of ICGNN in achieving near-optimal performance with an average inference time less than 0.1 ms. The scalability of ICGNN for unseen problem sizes is evaluated and enhanced by transfer learning with limited fine-tuning cost. The results of the centralized and distributed implementations of ICGNN are illustrated.
Abstract:An emerging fluid antenna system (FAS) brings a new dimension, i.e., the antenna positions, to deal with the deep fading, but simultaneously introduces challenges related to the transmit design. This paper proposes an ``unsupervised learning to optimize" paradigm to optimize the FAS. Particularly, we formulate the sum-rate and energy efficiency (EE) maximization problems for a multiple-user multiple-input single-output (MU-MISO) FAS and solved by a two-stage graph neural network (GNN) where the first stage and the second stage are for the inference of antenna positions and beamforming vectors, respectively. The outputs of the two stages are jointly input into a unsupervised loss function to train the two-stage GNN. The numerical results demonstrates that the advantages of the FAS for performance improvement and the two-stage GNN for real-time and scalable optimization. Besides, the two stages can function separately.