Abstract:Finding an high-quality solution for the tabletop object rearrangement planning is a challenging problem. Compared to determining a goal arrangement, rearrangement planning is challenging due to the dependencies between objects and the buffer capacity available to hold objects. Although orla* has proposed an A* based searching strategy with lazy evaluation for the high-quality solution, it is not scalable, with the success rate decreasing as the number of objects increases. To overcome this limitation, we propose an enhanced A*-based algorithm that improves state representation and employs incremental goal attempts with lazy evaluation at each iteration. This approach aims to enhance scalability while maintaining solution quality. Our evaluation demonstrates that our algorithm can provide superior solutions compared to orla*, in a shorter time, for both stationary and mobile robots.
Abstract:Autonomous driving for urban and highway driving applications often requires High Definition (HD) maps to generate a navigation plan. Nevertheless, various challenges arise when generating and maintaining HD maps at scale. While recent online mapping methods have started to emerge, their performance especially for longer ranges is limited by heavy occlusion in dynamic environments. With these considerations in mind, our work focuses on leveraging lightweight and scalable priors-Standard Definition (SD) maps-in the development of online vectorized HD map representations. We first examine the integration of prototypical rasterized SD map representations into various online mapping architectures. Furthermore, to identify lightweight strategies, we extend the OpenLane-V2 dataset with OpenStreetMaps and evaluate the benefits of graphical SD map representations. A key finding from designing SD map integration components is that SD map encoders are model agnostic and can be quickly adapted to new architectures that utilize bird's eye view (BEV) encoders. Our results show that making use of SD maps as priors for the online mapping task can significantly speed up convergence and boost the performance of the online centerline perception task by 30% (mAP). Furthermore, we show that the introduction of the SD maps leads to a reduction of the number of parameters in the perception and reasoning task by leveraging SD map graphs while improving the overall performance. Project Page: https://henryzhangzhy.github.io/sdhdmap/.
Abstract:$Q$-learning algorithms are appealing for real-world applications due to their data-efficiency, but they are very prone to overfitting and training instabilities when trained from visual observations. Prior work, namely SVEA, finds that selective application of data augmentation can improve the visual generalization of RL agents without destabilizing training. We revisit its recipe for data augmentation, and find an assumption that limits its effectiveness to augmentations of a photometric nature. Addressing these limitations, we propose a generalized recipe, SADA, that works with wider varieties of augmentations. We benchmark its effectiveness on DMC-GB2 -- our proposed extension of the popular DMControl Generalization Benchmark -- as well as tasks from Meta-World and the Distracting Control Suite, and find that our method, SADA, greatly improves training stability and generalization of RL agents across a diverse set of augmentations. Visualizations, code, and benchmark: see https://aalmuzairee.github.io/SADA/
Abstract:Vector maps are essential in autonomous driving for tasks like localization and planning, yet their creation and maintenance are notably costly. While recent advances in online vector map generation for autonomous vehicles are promising, current models lack adaptability to different sensor configurations. They tend to overfit to specific sensor poses, leading to decreased performance and higher retraining costs. This limitation hampers their practical use in real-world applications. In response to this challenge, we propose a modular pipeline for vector map generation with improved generalization to sensor configurations. The pipeline leverages probabilistic semantic mapping to generate a bird's-eye-view (BEV) semantic map as an intermediate representation. This intermediate representation is then converted to a vector map using the MapTRv2 decoder. By adopting a BEV semantic map robust to different sensor configurations, our proposed approach significantly improves the generalization performance. We evaluate the model on datasets with sensor configurations not used during training. Our evaluation sets includes larger public datasets, and smaller scale private data collected on our platform. Our model generalizes significantly better than the state-of-the-art methods.
Abstract:Controlling robotic manipulators via visual feedback requires a known coordinate frame transformation between the robot and the camera. Uncertainties in mechanical systems as well as camera calibration create errors in this coordinate frame transformation. These errors result in poor localization of robotic manipulators and create a significant challenge for applications that rely on precise interactions between manipulators and the environment. In this work, we estimate the camera-to-base transform and joint angle measurement errors for surgical robotic tools using an image based insertion-shaft detection algorithm and probabilistic models. We apply our proposed approach in both a structured environment as well as an unstructured environment and measure to demonstrate the efficacy of our methods.
Abstract:We consider the problem of building an assistive robotic system that can help humans in daily household cleanup tasks. Creating such an autonomous system in real-world environments is inherently quite challenging, as a general solution may not suit the preferences of a particular customer. Moreover, such a system consists of multi-objective tasks comprising -- (i) Detection of misplaced objects and prediction of their potentially correct placements, (ii) Fine-grained manipulation for stable object grasping, and (iii) Room-to-room navigation for transferring objects in unseen environments. This work systematically tackles each component and integrates them into a complete object rearrangement pipeline. To validate our proposed system, we conduct multiple experiments on a real robotic platform involving multi-room object transfer, user preference-based placement, and complex pick-and-place tasks. Project page: https://sites.google.com/eng.ucsd.edu/home-robot
Abstract:This research work seeks to explore and identify strategies that can determine road topology information in 2D and 3D under highly dynamic urban driving scenarios. To facilitate this exploration, we introduce a substantial dataset comprising nearly one million automatically labeled data frames. A key contribution of our research lies in developing an automatic label-generation process and an occlusion handling strategy. This strategy is designed to model a wide range of occlusion scenarios, from mild disruptions to severe blockages. Furthermore, we present a comprehensive ablation study wherein multiple centerline detection methods are developed and evaluated. This analysis not only benchmarks the performance of various approaches but also provides valuable insights into the interpretability of these methods. Finally, we demonstrate the practicality of our methods and assess their adaptability across different sensor configurations, highlighting their versatility and relevance in real-world scenarios. Our dataset and experimental models are publicly available.
Abstract:Due to their complexity, foliated structure problems often pose intricate challenges to task and motion planning in robotics manipulation. To counter this, our study presents the ``Foliated Repetition Roadmap.'' This roadmap assists task and motion planners by transforming the complex foliated structure problem into a more accessible graph format. By leveraging query experiences from different foliated manifolds, our framework can dynamically and efficiently update this graph. The refined graph can generate distribution sets, optimizing motion planning performance in foliated structure problems. In our paper, we lay down the theoretical groundwork and illustrate its practical applications through real-world examples.
Abstract:Nowadays, a number of grasping algorithms have been proposed, that can predict a candidate of grasp poses, even for unseen objects. This enables a robotic manipulator to pick-and-place such objects. However, some of the predicted grasp poses to stably lift a target object may not be directly approachable due to workspace limitations. In such cases, the robot will need to re-grasp the desired object to enable successful grasping on it. This involves planning a sequence of continuous actions such as sliding, re-grasping, and transferring. To address this multi-modal problem, we propose a Markov-Decision Process-based multi-modal planner that can rearrange the object into a position suitable for stable manipulation. We demonstrate improved performance in both simulation and the real world for pick-and-place tasks.
Abstract:Multi-turn textual feedback-based fashion image retrieval focuses on a real-world setting, where users can iteratively provide information to refine retrieval results until they find an item that fits all their requirements. In this work, we present a novel memory-based method, called FashionNTM, for such a multi-turn system. Our framework incorporates a new Cascaded Memory Neural Turing Machine (CM-NTM) approach for implicit state management, thereby learning to integrate information across all past turns to retrieve new images, for a given turn. Unlike vanilla Neural Turing Machine (NTM), our CM-NTM operates on multiple inputs, which interact with their respective memories via individual read and write heads, to learn complex relationships. Extensive evaluation results show that our proposed method outperforms the previous state-of-the-art algorithm by 50.5%, on Multi-turn FashionIQ -- the only existing multi-turn fashion dataset currently, in addition to having a relative improvement of 12.6% on Multi-turn Shoes -- an extension of the single-turn Shoes dataset that we created in this work. Further analysis of the model in a real-world interactive setting demonstrates two important capabilities of our model -- memory retention across turns, and agnosticity to turn order for non-contradictory feedback. Finally, user study results show that images retrieved by FashionNTM were favored by 83.1% over other multi-turn models. Project page: https://sites.google.com/eng.ucsd.edu/fashionntm