Abstract:We consider the problem of building an assistive robotic system that can help humans in daily household cleanup tasks. Creating such an autonomous system in real-world environments is inherently quite challenging, as a general solution may not suit the preferences of a particular customer. Moreover, such a system consists of multi-objective tasks comprising -- (i) Detection of misplaced objects and prediction of their potentially correct placements, (ii) Fine-grained manipulation for stable object grasping, and (iii) Room-to-room navigation for transferring objects in unseen environments. This work systematically tackles each component and integrates them into a complete object rearrangement pipeline. To validate our proposed system, we conduct multiple experiments on a real robotic platform involving multi-room object transfer, user preference-based placement, and complex pick-and-place tasks. Project page: https://sites.google.com/eng.ucsd.edu/home-robot
Abstract:Due to their complexity, foliated structure problems often pose intricate challenges to task and motion planning in robotics manipulation. To counter this, our study presents the ``Foliated Repetition Roadmap.'' This roadmap assists task and motion planners by transforming the complex foliated structure problem into a more accessible graph format. By leveraging query experiences from different foliated manifolds, our framework can dynamically and efficiently update this graph. The refined graph can generate distribution sets, optimizing motion planning performance in foliated structure problems. In our paper, we lay down the theoretical groundwork and illustrate its practical applications through real-world examples.