Abstract:Depth perception is essential for a robot's spatial and geometric understanding of its environment, with many tasks traditionally relying on hardware-based depth sensors like RGB-D or stereo cameras. However, these sensors face practical limitations, including issues with transparent and reflective objects, high costs, calibration complexity, spatial and energy constraints, and increased failure rates in compound systems. While monocular depth estimation methods offer a cost-effective and simpler alternative, their adoption in robotics is limited due to their output of relative rather than metric depth, which is crucial for robotics applications. In this paper, we propose a method that utilizes a single calibrated camera, enabling the robot to act as a ``measuring stick" to convert relative depth estimates into metric depth in real-time as tasks are performed. Our approach employs an LSTM-based metric depth regressor, trained online and refined through probabilistic filtering, to accurately restore the metric depth across the monocular depth map, particularly in areas proximal to the robot's motion. Experiments with real robots demonstrate that our method significantly outperforms current state-of-the-art monocular metric depth estimation techniques, achieving a 22.1% reduction in depth error and a 52% increase in success rate for a downstream task.
Abstract:Surgical automation has the capability to improve the consistency of patient outcomes and broaden access to advanced surgical care in underprivileged communities. Shared autonomy, where the robot automates routine subtasks while the surgeon retains partial teleoperative control, offers great potential to make an impact. In this paper we focus on one important skill within surgical shared autonomy: Automating robotic assistance to maximize visual exposure and apply tissue tension for dissection and cautery. Ensuring consistent exposure to visualize the surgical site is crucial for both efficiency and patient safety. However, achieving this is highly challenging due to the complexities of manipulating deformable volumetric tissues that are prevalent in surgery.To address these challenges we propose \methodname, a framework for autonomous surgical robotic assistance to \methodfullname. We integrate a differentiable physics model with perceptual feedback to achieve our two key objectives: 1) Maximizing tissue exposure and applying tension for a specified dissection site through visual-servoing conrol and 2) Selecting optimal control positions for a dissection target based on deformable Jacobian analysis. We quantitatively assess our method through repeated real robot experiments on a tissue phantom, and showcase its capabilities through dissection experiments using shared autonomy on real animal tissue.
Abstract:Chronic wounds, including diabetic ulcers, pressure ulcers, and ulcers secondary to venous hypertension, affects more than 6.5 million patients and a yearly cost of more than $25 billion in the United States alone. Chronic wound treatment is currently a manual process, and we envision a future where robotics and automation will aid in this treatment to reduce cost and improve patient care. In this work, we present the development of the first robotic system for wound dressing removal which is reported to be the worst aspect of living with chronic wounds. Our method leverages differentiable physics-based simulation to perform gradient-based Model Predictive Control (MPC) for optimized trajectory planning. By integrating fracture mechanics of adhesion, we are able to model the peeling effect inherent to dressing adhesion. The system is further guided by carefully designed objective functions that promote both efficient and safe control, reducing the risk of tissue damage. We validated the efficacy of our approach through a series of experiments conducted on both synthetic skin phantoms and real human subjects. Our results demonstrate the system's ability to achieve precise and safe dressing removal trajectories, offering a promising solution for automating this essential healthcare procedure.
Abstract:Automating suturing during robotically-assisted surgery reduces the burden on the operating surgeon, enabling them to focus on making higher-level decisions rather than fatiguing themselves in the numerous intricacies of a surgical procedure. Accurate suture thread reconstruction and grasping are vital prerequisites for suturing, particularly for avoiding entanglement with surgical tools and performing complex thread manipulation. However, such methods must be robust to heavy perceptual degradation resulting from heavy noise and thread feature sparsity from endoscopic images. We develop a reconstruction algorithm that utilizes quadratic programming optimization to fit smooth splines to thread observations, satisfying reliability bounds estimated from measured observation noise. Additionally, we craft a grasping policy that generates gripper trajectories that maximize the probability of a successful grasp. Our full image-to-grasp pipeline is rigorously evaluated with over 400 grasping trials, exhibiting state-of-the-art accuracy. We show that this strategy can be applied to the various techniques in autonomous suture needle manipulation to achieve autonomous surgery in a generalizable way.
Abstract:Surgical automation can improve the accessibility and consistency of life saving procedures. Most surgeries require separating layers of tissue to access the surgical site, and suturing to reattach incisions. These tasks involve deformable manipulation to safely identify and alter tissue attachment (boundary) topology. Due to poor visual acuity and frequent occlusions, surgeons tend to carefully manipulate the tissue in ways that enable inference of the tissue's attachment points without causing unsafe tearing. In a similar fashion, we propose JIGGLE, a framework for estimation and interactive sensing of unknown boundary parameters in deformable surgical environments. This framework has two key components: (1) a probabilistic estimation to identify the current attachment points, achieved by integrating a differentiable soft-body simulator with an extended Kalman filter (EKF), and (2) an optimization-based active control pipeline that generates actions to maximize information gain of the tissue attachments, while simultaneously minimizing safety costs. The robustness of our estimation approach is demonstrated through experiments with real animal tissue, where we infer sutured attachment points using stereo endoscope observations. We also demonstrate the capabilities of our method in handling complex topological changes such as cutting and suturing.
Abstract:Inaccurate tool localization is one of the main reasons for failures in automating surgical tasks. Imprecise robot kinematics and noisy observations caused by the poor visual acuity of an endoscopic camera make tool tracking challenging. Previous works in surgical automation adopt environment-specific setups or hard-coded strategies instead of explicitly considering motion and observation uncertainty of tool tracking in their policies. In this work, we present SURESTEP, an uncertainty-aware trajectory optimization framework for robust surgical automation. We model the uncertainty of tool tracking with the components motivated by the sources of noise in typical surgical scenes. Using a Gaussian assumption to propagate our uncertainty models through a given tool trajectory, SURESTEP provides a general framework that minimizes the upper bound on the entropy of the final estimated tool distribution. We compare SURESTEP with a baseline method on a real-world suture needle regrasping task under challenging environmental conditions, such as poor lighting and a moving endoscopic camera. The results over 60 regrasps on the da Vinci Research Kit (dVRK) demonstrate that our optimized trajectories significantly outperform the un-optimized baseline.
Abstract:Hemorrhaging occurs in surgeries of all types, forcing surgeons to quickly adapt to the visual interference that results from blood rapidly filling the surgical field. Introducing automation into the crucial surgical task of hemostasis management would offload mental and physical tasks from the surgeon and surgical assistants while simultaneously increasing the efficiency and safety of the operation. The first step in automation of hemostasis management is detection of blood in the surgical field. To propel the development of blood detection algorithms in surgeries, we present HemoSet, the first blood segmentation dataset based on bleeding during a live animal robotic surgery. Our dataset features vessel hemorrhage scenarios where turbulent flow leads to abnormal pooling geometries in surgical fields. These pools are formed in conditions endemic to surgical procedures -- uneven heterogeneous tissue, under glossy lighting conditions and rapid tool movement. We benchmark several state-of-the-art segmentation models and provide insight into the difficulties specific to blood detection. We intend for HemoSet to spur development of autonomous blood suction tools by providing a platform for training and refining blood segmentation models, addressing the precision needed for such robotics.
Abstract:Controlling robotic manipulators via visual feedback requires a known coordinate frame transformation between the robot and the camera. Uncertainties in mechanical systems as well as camera calibration create errors in this coordinate frame transformation. These errors result in poor localization of robotic manipulators and create a significant challenge for applications that rely on precise interactions between manipulators and the environment. In this work, we estimate the camera-to-base transform and joint angle measurement errors for surgical robotic tools using an image based insertion-shaft detection algorithm and probabilistic models. We apply our proposed approach in both a structured environment as well as an unstructured environment and measure to demonstrate the efficacy of our methods.
Abstract:Screw-based locomotion is a robust method of locomotion across a wide range of media including water, sand, and gravel. A challenge with screws is their significant number of impactful design parameters that affect locomotion performance in varying environments. One crucial parameter is the angle of attack, also referred to as the lead angle. The angle of attack has a significant impact on the screw's performance as it creates a trade-off between efficiency and forward velocity. This trend is consistent across various types of media. In this work, we present a Novel Actuating Screw Unit. It is the first screw-based propulsion design that enables the reconfiguration of the angle of attack dynamically for optimized locomotion across multiple media. The design is inspired by the kresling unit, which is a widespread mechanism in origami robotics, and the angle of attack is adjusted with a linear actuator, while the entire unit is spun on its axis as an archimedean screw. NASU is integrated onto a mobile test-bed and experiments are conducted in a large variety of media including gravel, grass, and sand. Our experiments show the proposed design is a promising direction for reconfigurable screws by allowing control to optimize for efficiency or velocity.
Abstract:Robot navigation within complex environments requires precise state estimation and localization to ensure robust and safe operations. For ambulating mobile robots like robot snakes, traditional methods for sensing require multiple embedded sensors or markers, leading to increased complexity, cost, and increased points of failure. Alternatively, deploying an external camera in the environment is very easy to do, and marker-less state estimation of the robot from this camera's images is an ideal solution: both simple and cost-effective. However, the challenge in this process is in tracking the robot under larger environments where the cameras may be moved around without extrinsic calibration, or maybe when in motion (e.g., a drone following the robot). The scenario itself presents a complex challenge: single-image reconstruction of robot poses under noisy observations. In this paper, we address the problem of tracking ambulatory mobile robots from a single camera. The method combines differentiable rendering with the Kalman filter. This synergy allows for simultaneous estimation of the robot's joint angle and pose while also providing state uncertainty which could be used later on for robust control. We demonstrate the efficacy of our approach on a snake-like robot in both stationary and non-stationary (moving) cameras, validating its performance in both structured and unstructured scenarios. The results achieved show an average error of 0.05 m in localizing the robot's base position and 6 degrees in joint state estimation. We believe this novel technique opens up possibilities for enhanced robot mobility and navigation in future exploratory and search-and-rescue missions.