Member, IEEE
Abstract:How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
Abstract:Manipulating deformable objects like cloth is challenging due to their complex dynamics, near-infinite degrees of freedom, and frequent self-occlusions, which complicate state estimation and dynamics modeling. Prior work has struggled with robust cloth state estimation, while dynamics models, primarily based on Graph Neural Networks (GNNs), are limited by their locality. Inspired by recent advances in generative models, we hypothesize that these expressive models can effectively capture intricate cloth configurations and deformation patterns from data. Building on this insight, we propose a diffusion-based generative approach for both perception and dynamics modeling. Specifically, we formulate state estimation as reconstructing the full cloth state from sparse RGB-D observations conditioned on a canonical cloth mesh and dynamics modeling as predicting future states given the current state and robot actions. Leveraging a transformer-based diffusion model, our method achieves high-fidelity state reconstruction while reducing long-horizon dynamics prediction errors by an order of magnitude compared to GNN-based approaches. Integrated with model-predictive control (MPC), our framework successfully executes cloth folding on a real robotic system, demonstrating the potential of generative models for manipulation tasks with partial observability and complex dynamics.
Abstract:Long-horizon tasks in robotic manipulation present significant challenges in reinforcement learning (RL) due to the difficulty of designing dense reward functions and effectively exploring the expansive state-action space. However, despite a lack of dense rewards, these tasks often have a multi-stage structure, which can be leveraged to decompose the overall objective into manageable subgoals. In this work, we propose DEMO3, a framework that exploits this structure for efficient learning from visual inputs. Specifically, our approach incorporates multi-stage dense reward learning, a bi-phasic training scheme, and world model learning into a carefully designed demonstration-augmented RL framework that strongly mitigates the challenge of exploration in long-horizon tasks. Our evaluations demonstrate that our method improves data-efficiency by an average of 40% and by 70% on particularly difficult tasks compared to state-of-the-art approaches. We validate this across 16 sparse-reward tasks spanning four domains, including challenging humanoid visual control tasks using as few as five demonstrations.
Abstract:Imitation learning is an efficient method for teaching robots a variety of tasks. Diffusion Policy, which uses a conditional denoising diffusion process to generate actions, has demonstrated superior performance, particularly in learning from multi-modal demonstrates. However, it relies on executing multiple actions to retain performance and prevent mode bouncing, which limits its responsiveness, as actions are not conditioned on the most recent observations. To address this, we introduce Responsive Noise-Relaying Diffusion Policy (RNR-DP), which maintains a noise-relaying buffer with progressively increasing noise levels and employs a sequential denoising mechanism that generates immediate, noise-free actions at the head of the sequence, while appending noisy actions at the tail. This ensures that actions are responsive and conditioned on the latest observations, while maintaining motion consistency through the noise-relaying buffer. This design enables the handling of tasks requiring responsive control, and accelerates action generation by reusing denoising steps. Experiments on response-sensitive tasks demonstrate that, compared to Diffusion Policy, ours achieves 18% improvement in success rate. Further evaluation on regular tasks demonstrates that RNR-DP also exceeds the best acceleration method by 6.9%, highlighting its computational efficiency advantage in scenarios where responsiveness is less critical.
Abstract:We present RigAnything, a novel autoregressive transformer-based model, which makes 3D assets rig-ready by probabilistically generating joints, skeleton topologies, and assigning skinning weights in a template-free manner. Unlike most existing auto-rigging methods, which rely on predefined skeleton template and are limited to specific categories like humanoid, RigAnything approaches the rigging problem in an autoregressive manner, iteratively predicting the next joint based on the global input shape and the previous prediction. While autoregressive models are typically used to generate sequential data, RigAnything extends their application to effectively learn and represent skeletons, which are inherently tree structures. To achieve this, we organize the joints in a breadth-first search (BFS) order, enabling the skeleton to be defined as a sequence of 3D locations and the parent index. Furthermore, our model improves the accuracy of position prediction by leveraging diffusion modeling, ensuring precise and consistent placement of joints within the hierarchy. This formulation allows the autoregressive model to efficiently capture both spatial and hierarchical relationships within the skeleton. Trained end-to-end on both RigNet and Objaverse datasets, RigAnything demonstrates state-of-the-art performance across diverse object types, including humanoids, quadrupeds, marine creatures, insects, and many more, surpassing prior methods in quality, robustness, generalizability, and efficiency. Please check our website for more details: https://www.liuisabella.com/RigAnything.
Abstract:Recent advancements in robot learning have used imitation learning with large models and extensive demonstrations to develop effective policies. However, these models are often limited by the quantity, quality, and diversity of demonstrations. This paper explores improving offline-trained imitation learning models through online interactions with the environment. We introduce Policy Decorator, which uses a model-agnostic residual policy to refine large imitation learning models during online interactions. By implementing controlled exploration strategies, Policy Decorator enables stable, sample-efficient online learning. Our evaluation spans eight tasks across two benchmarks-ManiSkill and Adroit-and involves two state-of-the-art imitation learning models (Behavior Transformer and Diffusion Policy). The results show Policy Decorator effectively improves the offline-trained policies and preserves the smooth motion of imitation learning models, avoiding the erratic behaviors of pure RL policies. See our project page (https://policydecorator.github.io) for videos.
Abstract:Learning policies from high-dimensional visual inputs, such as pixels and point clouds, is crucial in various applications. Visual reinforcement learning is a promising approach that directly trains policies from visual observations, although it faces challenges in sample efficiency and computational costs. This study conducts an empirical comparison of State-to-Visual DAgger, a two-stage framework that initially trains a state policy before adopting online imitation to learn a visual policy, and Visual RL across a diverse set of tasks. We evaluate both methods across 16 tasks from three benchmarks, focusing on their asymptotic performance, sample efficiency, and computational costs. Surprisingly, our findings reveal that State-to-Visual DAgger does not universally outperform Visual RL but shows significant advantages in challenging tasks, offering more consistent performance. In contrast, its benefits in sample efficiency are less pronounced, although it often reduces the overall wall-clock time required for training. Based on our findings, we provide recommendations for practitioners and hope that our results contribute valuable perspectives for future research in visual policy learning.
Abstract:This article introduces the ManiSkill-ViTac Challenge 2025, which focuses on learning contact-rich manipulation skills using both tactile and visual sensing. Expanding upon the 2024 challenge, ManiSkill-ViTac 2025 includes 3 independent tracks: tactile manipulation, tactile-vision fusion manipulation, and tactile sensor structure design. The challenge aims to push the boundaries of robotic manipulation skills, emphasizing the integration of tactile and visual data to enhance performance in complex, real-world tasks. Participants will be evaluated using standardized metrics across both simulated and real-world environments, spurring innovations in sensor design and significantly advancing the field of vision-tactile fusion in robotics.
Abstract:Multi-view image diffusion models have significantly advanced open-domain 3D object generation. However, most existing models rely on 2D network architectures that lack inherent 3D biases, resulting in compromised geometric consistency. To address this challenge, we introduce 3D-Adapter, a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models. Central to our approach is the idea of 3D feedback augmentation: for each denoising step in the sampling loop, 3D-Adapter decodes intermediate multi-view features into a coherent 3D representation, then re-encodes the rendered RGBD views to augment the pretrained base model through feature addition. We study two variants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and a versatile training-free version utilizing neural fields and meshes. Our extensive experiments demonstrate that 3D-Adapter not only greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++, but also enables high-quality 3D generation using the plain text-to-image Stable Diffusion. Furthermore, we showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks.
Abstract:Imitation learning (IL) enables agents to acquire skills directly from expert demonstrations, providing a compelling alternative to reinforcement learning. However, prior online IL approaches struggle with complex tasks characterized by high-dimensional inputs and complex dynamics. In this work, we propose a novel approach to online imitation learning that leverages reward-free world models. Our method learns environmental dynamics entirely in latent spaces without reconstruction, enabling efficient and accurate modeling. We adopt the inverse soft-Q learning objective, reformulating the optimization process in the Q-policy space to mitigate the instability associated with traditional optimization in the reward-policy space. By employing a learned latent dynamics model and planning for control, our approach consistently achieves stable, expert-level performance in tasks with high-dimensional observation or action spaces and intricate dynamics. We evaluate our method on a diverse set of benchmarks, including DMControl, MyoSuite, and ManiSkill2, demonstrating superior empirical performance compared to existing approaches.