Abstract:Cell-free massive multiple-input multiple-output (mMIMO) offers significant advantages in mobility scenarios, mainly due to the elimination of cell boundaries and strong macro diversity. In this paper, we examine the downlink performance of cell-free mMIMO systems equipped with mobile-APs utilizing the concept of unmanned aerial vehicles, where mobility and power control are jointly considered to effectively enhance coverage and suppress interference. However, the high computational complexity, poor collaboration, limited scalability, and uneven reward distribution of conventional optimization schemes lead to serious performance degradation and instability. These factors complicate the provision of consistent and high-quality service across all user equipments in downlink cell-free mMIMO systems. Consequently, we propose a novel scalable framework enhanced by multi-agent reinforcement learning (MARL) to tackle these challenges. The established framework incorporates a graph neural network (GNN)-aided communication mechanism to facilitate effective collaboration among agents, a permutation architecture to improve scalability, and a directional decoupling architecture to accurately distinguish contributions. In the numerical results, we present comparisons of different optimization schemes and network architectures, which reveal that the proposed scheme can effectively enhance system performance compared to conventional schemes due to the adoption of advanced technologies. In particular, appropriately compressing the observation space of agents is beneficial for achieving a better balance between performance and convergence.
Abstract:Cell-free (CF) massive multiple-input multiple-output (mMIMO) and reconfigurable intelligent surface (RIS) are two advanced transceiver technologies for realizing future sixth-generation (6G) networks. In this paper, we investigate the joint precoding and access point (AP) selection for energy efficient RIS-aided CF mMIMO system. To address the associated computational complexity and communication power consumption, we advocate for user-centric dynamic networks in which each user is served by a subset of APs rather than by all of them. Based on the user-centric network, we formulate a joint precoding and AP selection problem to maximize the energy efficiency (EE) of the considered system. To solve this complex nonconvex problem, we propose an innovative double-layer multi-agent reinforcement learning (MARL)-based scheme. Moreover, we propose an adaptive power threshold-based AP selection scheme to further enhance the EE of the considered system. To reduce the computational complexity of the RIS-aided CF mMIMO system, we introduce a fuzzy logic (FL) strategy into the MARL scheme to accelerate convergence. The simulation results show that the proposed FL-based MARL cooperative architecture effectively improves EE performance, offering a 85\% enhancement over the zero-forcing (ZF) method, and achieves faster convergence speed compared with MARL. It is important to note that increasing the transmission power of the APs or the number of RIS elements can effectively enhance the spectral efficiency (SE) performance, which also leads to an increase in power consumption, resulting in a non-trivial trade-off between the quality of service and EE performance.
Abstract:Cell-free massive multiple-input multiple-output (mMIMO) is a promising technology to empower next-generation mobile communication networks. In this paper, to address the computational complexity associated with conventional fingerprint positioning, we consider a novel cooperative positioning architecture that involves certain relevant access points (APs) to establish positioning similarity coefficients. Then, we propose an innovative joint positioning and correction framework employing multi-agent reinforcement learning (MARL) to tackle the challenges of high-dimensional sophisticated signal processing, which mainly leverages on the received signal strength information for preliminary positioning, supplemented by the angle of arrival information to refine the initial position estimation. Moreover, to mitigate the bias effects originating from remote APs, we design a cooperative weighted K-nearest neighbor (Co-WKNN)-based estimation scheme to select APs with a high correlation to participate in user positioning. In the numerical results, we present comparisons of various user positioning schemes, which reveal that the proposed MARL-based positioning scheme with Co-WKNN can effectively improve positioning performance. It is important to note that the cooperative positioning architecture is a critical element in striking a balance between positioning performance and computational complexity.
Abstract:In this paper, we investigate a cell-free massive multiple-input multiple-output system, which exhibits great potential in enhancing the capabilities of next-generation mobile communication networks. We first study the distributed positioning problem to lay the groundwork for solving resource allocation and interference management issues. Instead of relying on computationally and spatially complex fingerprint positioning methods, we propose a novel two-stage distributed collaborative positioning architecture with multi-agent reinforcement learning (MARL) network, consisting of a received signal strength-based preliminary positioning network and an angle of arrival-based auxiliary correction network. Our experimental results demonstrate that the two-stage distributed collaborative user positioning architecture can outperform conventional fingerprint positioning methods in terms of positioning accuracy.
Abstract:The stacked intelligent metasurface (SIM) emerges as an innovative technology with the ability to directly manipulate electromagnetic (EM) wave signals, drawing parallels to the operational principles of artificial neural networks (ANN). Leveraging its structure for direct EM signal processing alongside its low-power consumption, SIM holds promise for enhancing system performance within wireless communication systems. In this paper, we focus on SIM-assisted multi-user multi-input and single-output (MU-MISO) system downlink scenarios in the transmitter. We proposed a joint optimization method for SIM phase shift configuration and antenna power allocation based on the twin delayed deep deterministic policy gradient (TD3) algorithm to efficiently improve the sum rate. The results show that the proposed algorithm outperforms both deep deterministic policy gradient (DDPG) and alternating optimization (AO) algorithms. Furthermore, increasing the number of meta-atoms per layer of the SIM is always beneficial. However, continuously increasing the number of layers of SIM does not lead to sustained performance improvement.
Abstract:Cell-free (CF) extremely large-scale multiple-input multiple-output (XL-MIMO) is regarded as a promising technology for enabling future wireless communication systems. Significant attention has been generated by its considerable advantages in augmenting degrees of freedom. In this paper, we first investigate a CF XL-MIMO system with base stations equipped with XL-MIMO panels under a dynamic environment. Then, we propose an innovative multi-agent reinforcement learning (MARL)-based power control algorithm that incorporates predictive management and distributed optimization architecture, which provides a dynamic strategy for addressing high-dimension signal processing problems. Specifically, we compare various MARL-based algorithms, which shows that the proposed MARL-based algorithm effectively strikes a balance between spectral efficiency (SE) performance and convergence time. Moreover, we consider a double-layer power control architecture based on the large-scale fading coefficients between antennas to suppress interference within dynamic systems. Compared to the single-layer architecture, the results obtained unveil that the proposed double-layer architecture has a nearly24% SE performance improvement, especially with massive antennas and smaller antenna spacing.
Abstract:Cell-free massive multiple-input multiple-output (mMIMO) and extremely large-scale MIMO (XL-MIMO) are regarded as promising innovations for the forthcoming generation of wireless communication systems. Their significant advantages in augmenting the number of degrees of freedom have garnered considerable interest. In this article, we first review the essential opportunities and challenges induced by XL-MIMO systems. We then propose the enhanced paradigm of cell-free XL-MIMO, which incorporates multi-agent reinforcement learning (MARL) to provide a distributed strategy for tackling the problem of high-dimension signal processing and costly energy consumption. Based on the unique near-field characteristics, we propose two categories of the low-complexity design, i.e., antenna selection and power control, to adapt to different cell-free XL-MIMO scenarios and achieve the maximum data rate. For inspiration, several critical future research directions pertaining to green cell-free XL-MIMO systems are presented.
Abstract:In this paper, we investigate the uplink transmit power optimization problem in cell-free (CF) extremely large-scale multiple-input multiple-output (XL-MIMO) systems. Instead of applying the traditional methods, we propose two signal processing architectures: the centralized training and centralized execution with fuzzy logic as well as the centralized training and decentralized execution with fuzzy logic, respectively, which adopt the amalgamation of multi-agent reinforcement learning (MARL) and fuzzy logic to solve the design problem of power control for the maximization of the system spectral efficiency (SE). Furthermore, the uplink performance of the system adopting maximum ratio (MR) combining and local minimum mean-squared error (L-MMSE) combining is evaluated. Our results show that the proposed methods with fuzzy logic outperform the conventional MARL-based method and signal processing methods in terms of computational complexity. Also, the SE performance under MR combining is even better than that of the conventional MARL-based method.
Abstract:Recent years have witnessed the rapid growth of Small Private Online Courses (SPOC) which is able to highly customized and personalized to adapt variable educational requests, in which machine learning techniques are explored to summarize and predict the learner's performance, mostly focus on the final grade. However, the problem is that the final grade of learners on SPOC is generally seriously imbalance which handicaps the training of prediction model. To solve this problem, a sampling batch normalization embedded deep neural network (SBNEDNN) method is developed in this paper. First, a combined indicator is defined to measure the distribution of the data, then a rule is established to guide the sampling process. Second, the batch normalization (BN) modified layers are embedded into full connected neural network to solve the data imbalanced problem. Experimental results with other three deep learning methods demonstrates the superiority of the proposed method.