Sherman
Abstract:Cell-free massive multiple-input multiple-output (mMIMO) is a promising technology to empower next-generation mobile communication networks. In this paper, to address the computational complexity associated with conventional fingerprint positioning, we consider a novel cooperative positioning architecture that involves certain relevant access points (APs) to establish positioning similarity coefficients. Then, we propose an innovative joint positioning and correction framework employing multi-agent reinforcement learning (MARL) to tackle the challenges of high-dimensional sophisticated signal processing, which mainly leverages on the received signal strength information for preliminary positioning, supplemented by the angle of arrival information to refine the initial position estimation. Moreover, to mitigate the bias effects originating from remote APs, we design a cooperative weighted K-nearest neighbor (Co-WKNN)-based estimation scheme to select APs with a high correlation to participate in user positioning. In the numerical results, we present comparisons of various user positioning schemes, which reveal that the proposed MARL-based positioning scheme with Co-WKNN can effectively improve positioning performance. It is important to note that the cooperative positioning architecture is a critical element in striking a balance between positioning performance and computational complexity.
Abstract:In this paper, we investigate a cell-free massive multiple-input multiple-output system, which exhibits great potential in enhancing the capabilities of next-generation mobile communication networks. We first study the distributed positioning problem to lay the groundwork for solving resource allocation and interference management issues. Instead of relying on computationally and spatially complex fingerprint positioning methods, we propose a novel two-stage distributed collaborative positioning architecture with multi-agent reinforcement learning (MARL) network, consisting of a received signal strength-based preliminary positioning network and an angle of arrival-based auxiliary correction network. Our experimental results demonstrate that the two-stage distributed collaborative user positioning architecture can outperform conventional fingerprint positioning methods in terms of positioning accuracy.
Abstract:The stacked intelligent metasurface (SIM) emerges as an innovative technology with the ability to directly manipulate electromagnetic (EM) wave signals, drawing parallels to the operational principles of artificial neural networks (ANN). Leveraging its structure for direct EM signal processing alongside its low-power consumption, SIM holds promise for enhancing system performance within wireless communication systems. In this paper, we focus on SIM-assisted multi-user multi-input and single-output (MU-MISO) system downlink scenarios in the transmitter. We proposed a joint optimization method for SIM phase shift configuration and antenna power allocation based on the twin delayed deep deterministic policy gradient (TD3) algorithm to efficiently improve the sum rate. The results show that the proposed algorithm outperforms both deep deterministic policy gradient (DDPG) and alternating optimization (AO) algorithms. Furthermore, increasing the number of meta-atoms per layer of the SIM is always beneficial. However, continuously increasing the number of layers of SIM does not lead to sustained performance improvement.
Abstract:An introduction of intelligent interconnectivity for people and things has posed higher demands and more challenges for sixth-generation (6G) networks, such as high spectral efficiency and energy efficiency, ultra-low latency, and ultra-high reliability. Cell-free (CF) massive multiple-input multiple-output (mMIMO) and reconfigurable intelligent surface (RIS), also called intelligent reflecting surface (IRS), are two promising technologies for coping with these unprecedented demands. Given their distinct capabilities, integrating the two technologies to further enhance wireless network performances has received great research and development attention. In this paper, we provide a comprehensive survey of research on RIS-aided CF mMIMO wireless communication systems. We first introduce system models focusing on system architecture and application scenarios, channel models, and communication protocols. Subsequently, we summarize the relevant studies on system operation and resource allocation, providing in-depth analyses and discussions. Following this, we present practical challenges faced by RIS-aided CF mMIMO systems, particularly those introduced by RIS, such as hardware impairments and electromagnetic interference. We summarize corresponding analyses and solutions to further facilitate the implementation of RIS-aided CF mMIMO systems. Furthermore, we explore an interplay between RIS-aided CF mMIMO and other emerging 6G technologies, such as next-generation multiple-access (NGMA), simultaneous wireless information and power transfer (SWIPT), and millimeter wave (mmWave). Finally, we outline several research directions for future RIS-aided CF mMIMO systems.
Abstract:Cell-free (CF) massive multiple-input multiple-output (MIMO) and reconfigurable intelligent surface (RIS) are two promising technologies for realizing future beyond-fifth generation (B5G) networks. In this paper, we consider a practical spatially correlated RIS-aided CF massive MIMO system with multi-antenna access points (APs) over spatially correlated fading channels. Different from previous work, the electromagnetic interference (EMI) at RIS is considered to further characterize the system performance of the actual environment. Then, we derive the closed-form expression for the system spectral efficiency (SE) with the maximum ratio (MR) combining at the APs and the large-scale fading decoding (LSFD) at the central processing unit (CPU). Moreover, to counteract the near-far effect and EMI, we propose practical fractional power control (FPC) and max-min power control algorithms to further improve the system performance. We unveil the impact of EMI, channel correlations, and different signal processing methods on the uplink SE of user equipments (UEs). The accuracy of our derived analytical results is verified by extensive Monte-Carlo simulations. Our results show that the EMI can substantially degrade the SE, especially for those UEs with unsatisfactory channel conditions. Besides, increasing the number of RIS elements is always beneficial in terms of the SE, but with diminishing returns when the number of RIS elements is sufficiently large. Furthermore, the existence of spatial correlations among RIS elements can deteriorate the system performance when RIS is impaired by EMI.
Abstract:We consider a practical spatially correlated reconfigurable intelligent surface (RIS)-aided cell-free (CF) massive multiple-input-multiple-output (mMIMO) system with multi-antenna access points (APs) over spatially correlated Rician fading channels. The minimum mean square error (MMSE) channel estimator is adopted to estimate the aggregated RIS channels. Then, we investigate the uplink spectral efficiency (SE) with the maximum ratio (MR) and the local minimum mean squared error (L-MMSE) combining at the APs and obtain the closed-form expression for characterizing the performance of the former. The accuracy of our derived analytical results has been verified by extensive Monte-Carlo simulations. Our results show that increasing the number of RIS elements is always beneficial, but with diminishing returns when the number of RIS elements is sufficiently large. Furthermore, the effect of the number of AP antennas on system performance is more pronounced under a small number of RIS elements, while the spatial correlation of RIS elements imposes a more severe negative impact on the system performance than that of the AP antennas.
Abstract:High-speed train (HST) communications with orthogonal frequency division multiplexing (OFDM) techniques have received significant attention in recent years. Besides, cell-free (CF) massive multiple-input multiple-output (MIMO) is considered a promising technology to achieve the ultimate performance limit. In this paper, we focus on the performance of CF massive MIMO-OFDM systems with both matched filter and large-scale fading decoding (LSFD) receivers in HST communications. HST communications with small cell and cellular massive MIMO-OFDM systems are also analyzed for comparison. Considering the bad effect of Doppler frequency offset (DFO) on system performance, exact closed-form expressions for uplink spectral efficiency (SE) of all systems are derived. According to the simulation results, we find that the CF massive MIMO-OFDM system with LSFD achieves both larger SE and lower SE drop percentages than other systems. In addition, increasing the number of access points (APs) and antennas per AP can effectively compensate for the performance loss from the DFO. Moreover, there is an optimal vertical distance between APs and HST to achieve the maximum SE.