Abstract:Chain-of-thought (CoT) prompting has achieved remarkable success in natural language processing (NLP). However, its vast potential remains largely unexplored for graphs. This raises an interesting question: How can we design CoT prompting for graphs to guide graph models to learn step by step? On one hand, unlike natural languages, graphs are non-linear and characterized by complex topological structures. On the other hand, many graphs lack textual data, making it difficult to formulate language-based CoT prompting. In this work, we propose the first CoT prompt learning framework for text-free graphs, GCoT. Specifically, we decompose the adaptation process for each downstream task into a series of inference steps, with each step consisting of prompt-based inference, ``thought'' generation, and thought-conditioned prompt learning. While the steps mimic CoT prompting in NLP, the exact mechanism differs significantly. Specifically, at each step, an input graph, along with a prompt, is first fed into a pre-trained graph encoder for prompt-based inference. We then aggregate the hidden layers of the encoder to construct a ``thought'', which captures the working state of each node in the current step. Conditioned on this thought, we learn a prompt specific to each node based on the current state. These prompts are fed into the next inference step, repeating the cycle. To evaluate and analyze the effectiveness of GCoT, we conduct comprehensive experiments on eight public datasets, which demonstrate the advantage of our approach.
Abstract:Graphs are able to model interconnected entities in many online services, supporting a wide range of applications on the Web. This raises an important question: How can we train a graph foundational model on multiple source domains and adapt to an unseen target domain? A major obstacle is that graphs from different domains often exhibit divergent characteristics. Some studies leverage large language models to align multiple domains based on textual descriptions associated with the graphs, limiting their applicability to text-attributed graphs. For text-free graphs, a few recent works attempt to align different feature distributions across domains, while generally neglecting structural differences. In this work, we propose a novel Structure Alignment framework for text-free Multi-domain Graph Pre-Training and cross-domain adaptation (SAMGPT). It is designed to learn multi-domain knowledge from graphs originating in multiple source domains, which can then be adapted to address applications in an unseen target domain. Specifically, we introduce a set of structure tokens to harmonize structure-based aggregation across source domains during the pre-training phase. Next, for cross-domain adaptation, we design dual prompts, namely, holistic prompts and specific prompts, which adapt unified multi-domain structural knowledge and fine-grained, domain-specific information, respectively, to a target domain. Finally, we conduct comprehensive experiments on seven public datasets to evaluate and analyze the effectiveness of SAMGPT.
Abstract:Online reviews allow consumers to provide detailed feedback on various aspects of items. Existing methods utilize these aspects to model users' fine-grained preferences for specific item features through graph neural networks. We argue that the performance of items on different aspects is important for making precise recommendations, which has not been taken into account by existing approaches, due to lack of data. In this paper, we propose an aspect performance-aware hypergraph neural network (APH) for the review-based recommendation, which learns the performance of items from the conflicting sentiment polarity of user reviews. Specifically, APH comprehensively models the relationships among users, items, aspects, and sentiment polarity by systematically constructing an aspect hypergraph based on user reviews. In addition, APH aggregates aspects representing users and items by employing an aspect performance-aware hypergraph aggregation method. It aggregates the sentiment polarities from multiple users by jointly considering user preferences and the semantics of their sentiments, determining the weights of sentiment polarities to infer the performance of items on various aspects. Such performances are then used as weights to aggregate neighboring aspects. Experiments on six real-world datasets demonstrate that APH improves MSE, Precision@5, and Recall@5 by an average of 2.30%, 4.89%, and 1.60% over the best baseline. The source code and data are available at https://github.com/dianziliu/APH.
Abstract:Learning effective latent representations for users and items is the cornerstone of recommender systems. Traditional approaches rely on user-item interaction data to map users and items into a shared latent space, but the sparsity of interactions often poses challenges. While leveraging user reviews could mitigate this sparsity, existing review-aware recommendation models often exhibit two key limitations. First, they typically rely on reviews as additional features, but reviews are not universal, with many users and items lacking them. Second, such approaches do not integrate reviews into the user-item space, leading to potential divergence or inconsistency among user, item, and review representations. To overcome these limitations, our work introduces a Review-centric Contrastive Alignment Framework for Recommendation (ReCAFR), which incorporates reviews into the core learning process, ensuring alignment among user, item, and review representations within a unified space. Specifically, we leverage two self-supervised contrastive strategies that not only exploit review-based augmentation to alleviate sparsity, but also align the tripartite representations to enhance robustness. Empirical studies on public benchmark datasets demonstrate the effectiveness and robustness of ReCAFR.
Abstract:Crack detection is a critical task in structural health monitoring, aimed at assessing the structural integrity of bridges, buildings, and roads to prevent potential failures. Vision-based crack detection has become the mainstream approach due to its ease of implementation and effectiveness. Fusing infrared (IR) channels with red, green and blue (RGB) channels can enhance feature representation and thus improve crack detection. However, IR and RGB channels often differ in resolution. To align them, higher-resolution RGB images typically need to be downsampled to match the IR image resolution, which leads to the loss of fine details. Moreover, crack detection performance is restricted by the limited receptive fields and high computational complexity of traditional image segmentation networks. Inspired by the recently proposed Mamba neural architecture, this study introduces a two-stage paradigm called MSCrackMamba, which leverages Vision Mamba along with a super-resolution network to address these challenges. Specifically, to align IR and RGB channels, we first apply super-resolution to IR channels to match the resolution of RGB channels for data fusion. Vision Mamba is then adopted as the backbone network, while UperNet is employed as the decoder for crack detection. Our approach is validated on the large-scale Crack Detection dataset Crack900, demonstrating an improvement of 3.55% in mIoU compared to the best-performing baseline methods.
Abstract:This paper presents an overview on intelligent reflecting surface (IRS)-enabled sensing and communication for the forthcoming sixth-generation (6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication (S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's (BS's) non-line-of-sight (NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication (ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
Abstract:In the rapidly evolving field of conversational AI, Ontology Expansion (OnExp) is crucial for enhancing the adaptability and robustness of conversational agents. Traditional models rely on static, predefined ontologies, limiting their ability to handle new and unforeseen user needs. This survey paper provides a comprehensive review of the state-of-the-art techniques in OnExp for conversational understanding. It categorizes the existing literature into three main areas: (1) New Intent Discovery, (2) New Slot-Value Discovery, and (3) Joint OnExp. By examining the methodologies, benchmarks, and challenges associated with these areas, we highlight several emerging frontiers in OnExp to improve agent performance in real-world scenarios and discuss their corresponding challenges. This survey aspires to be a foundational reference for researchers and practitioners, promoting further exploration and innovation in this crucial domain.
Abstract:In recent years, imitation learning has made progress in the field of robotic manipulation. However, it still faces challenges when dealing with complex long-horizon deformable object tasks, such as high-dimensional state spaces, complex dynamics, and multimodal action distributions. Traditional imitation learning methods often require a large amount of data and encounter distributional shifts and accumulative errors in these tasks. To address these issues, we propose a data-efficient general learning framework (DeformPAM) based on preference learning and reward-guided action selection. DeformPAM decomposes long-horizon tasks into multiple action primitives, utilizes 3D point cloud inputs and diffusion models to model action distributions, and trains an implicit reward model using human preference data. During the inference phase, the reward model scores multiple candidate actions, selecting the optimal action for execution, thereby reducing the occurrence of anomalous actions and improving task completion quality. Experiments conducted on three challenging real-world long-horizon deformable object manipulation tasks demonstrate the effectiveness of this method. Results show that DeformPAM improves both task completion quality and efficiency compared to baseline methods even with limited data. Code and data will be available at https://deform-pam.robotflow.ai.
Abstract:Prompt engineering is very important to enhance the performance of large language models (LLMs). When dealing with complex issues, prompt engineers tend to distill multiple patterns from examples and inject relevant solutions to optimize the prompts, achieving satisfying results. However, existing automatic prompt optimization techniques are only limited to producing single flow instructions, struggling with handling diverse patterns. In this paper, we present AMPO, an automatic prompt optimization method that can iteratively develop a multi-branched prompt using failure cases as feedback. Our goal is to explore a novel way of structuring prompts with multi-branches to better handle multiple patterns in complex tasks, for which we introduce three modules: Pattern Recognition, Branch Adjustment, and Branch Pruning. In experiments across five tasks, AMPO consistently achieves the best results. Additionally, our approach demonstrates significant optimization efficiency due to our adoption of a minimal search strategy.
Abstract:Knowledge graphs (KGs) are instrumental in various real-world applications, yet they often suffer from incompleteness due to missing relations. To predict instances for novel relations with limited training examples, few-shot relation learning approaches have emerged, utilizing techniques such as meta-learning. However, the assumption is that novel relations in meta-testing and base relations in meta-training are independently and identically distributed, which may not hold in practice. To address the limitation, we propose RelAdapter, a context-aware adapter for few-shot relation learning in KGs designed to enhance the adaptation process in meta-learning. First, RelAdapter is equipped with a lightweight adapter module that facilitates relation-specific, tunable adaptation of meta-knowledge in a parameter-efficient manner. Second, RelAdapter is enriched with contextual information about the target relation, enabling enhanced adaptation to each distinct relation. Extensive experiments on three benchmark KGs validate the superiority of RelAdapter over state-of-the-art methods.