Centre for Medical Image Computing, Department of Computer Science, University College London, UK
Abstract:Lung cancer is a leading cause of cancer-related deaths globally. PET-CT is crucial for imaging lung tumors, providing essential metabolic and anatomical information, while it faces challenges such as poor image quality, motion artifacts, and complex tumor morphology. Deep learning-based models are expected to address these problems, however, existing small-scale and private datasets limit significant performance improvements for these methods. Hence, we introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients. Furthermore, we propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images. Specifically, we design a channel-wise rectification module (CRM) that implements a channel state space block across multi-modal features to learn correlated representations and helps filter out modality-specific noise. A dynamic cross-modality interaction module (DCIM) is designed to effectively integrate position and context information, which employs PET images to learn regional position information and serves as a bridge to assist in modeling the relationships between local features of CT images. Extensive experiments on a comprehensive benchmark demonstrate the effectiveness of our CIPA compared to the current state-of-the-art segmentation methods. We hope our research can provide more exploration opportunities for medical image segmentation. The dataset and code are available at https://github.com/mj129/CIPA.
Abstract:Diffusion models have demonstrated impressive generation capabilities, particularly with recent advancements leveraging transformer architectures to improve both visual and artistic quality. However, Diffusion Transformers (DiTs) continue to encounter challenges related to low inference speed, primarily due to the iterative denoising process. To address this issue, we propose BlockDance, a training-free approach that explores feature similarities at adjacent time steps to accelerate DiTs. Unlike previous feature-reuse methods that lack tailored reuse strategies for features at different scales, BlockDance prioritizes the identification of the most structurally similar features, referred to as Structurally Similar Spatio-Temporal (STSS) features. These features are primarily located within the structure-focused blocks of the transformer during the later stages of denoising. BlockDance caches and reuses these highly similar features to mitigate redundant computation, thereby accelerating DiTs while maximizing consistency with the generated results of the original model. Furthermore, considering the diversity of generated content and the varying distributions of redundant features, we introduce BlockDance-Ada, a lightweight decision-making network tailored for instance-specific acceleration. BlockDance-Ada dynamically allocates resources and provides superior content quality. Both BlockDance and BlockDance-Ada have proven effective across various generation tasks and models, achieving accelerations between 25% and 50% while maintaining generation quality.
Abstract:Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
Abstract:Automatically adapting novels into screenplays is important for the TV, film, or opera industries to promote products with low costs. The strong performances of large language models (LLMs) in long-text generation call us to propose a LLM based framework Reader-Rewriter (R$^2$) for this task. However, there are two fundamental challenges here. First, the LLM hallucinations may cause inconsistent plot extraction and screenplay generation. Second, the causality-embedded plot lines should be effectively extracted for coherent rewriting. Therefore, two corresponding tactics are proposed: 1) A hallucination-aware refinement method (HAR) to iteratively discover and eliminate the affections of hallucinations; and 2) a causal plot-graph construction method (CPC) based on a greedy cycle-breaking algorithm to efficiently construct plot lines with event causalities. Recruiting those efficient techniques, R$^2$ utilizes two modules to mimic the human screenplay rewriting process: The Reader module adopts a sliding window and CPC to build the causal plot graphs, while the Rewriter module generates first the scene outlines based on the graphs and then the screenplays. HAR is integrated into both modules for accurate inferences of LLMs. Experimental results demonstrate the superiority of R$^2$, which substantially outperforms three existing approaches (51.3%, 22.6%, and 57.1% absolute increases) in pairwise comparison at the overall win rate for GPT-4o.
Abstract:This paper presents NimbleReg, a light-weight deep-learning (DL) framework for diffeomorphic image registration leveraging surface representation of multiple segmented anatomical regions. Deep learning has revolutionized image registration but most methods typically rely on cumbersome gridded representations, leading to hardware-intensive models. Reliable fine-grained segmentations, that are now accessible at low cost, are often used to guide the alignment. Light-weight methods representing segmentations in terms of boundary surfaces have been proposed, but they lack mechanism to support the fusion of multiple regional mappings into an overall diffeomorphic transformation. Building on these advances, we propose a DL registration method capable of aligning surfaces from multiple segmented regions to generate an overall diffeomorphic transformation for the whole ambient space. The proposed model is light-weight thanks to a PointNet backbone. Diffeomoprhic properties are guaranteed by taking advantage of the stationary velocity field parametrization of diffeomorphisms. We demonstrate that this approach achieves alignment comparable to state-of-the-art DL-based registration techniques that consume images.
Abstract:Monocular visual localization plays a pivotal role in advanced driver assistance systems and autonomous driving by estimating a vehicle's ego-motion from a single pinhole camera. Nevertheless, conventional monocular visual odometry encoun-ters challenges in scale estimation due to the absence of depth information during projection. Previous methodologies, whether rooted in physical constraints or deep learning paradigms, con-tend with issues related to computational complexity and the management of dynamic objects. This study extends our prior research, presenting innovative strategies for ego-motion estima-tion and the selection of ground points. Striving for a nuanced equilibrium between computational efficiency and precision, we propose a hybrid method that leverages the SegNeXt model for real-time applications, encompassing both ego-motion estimation and ground point selection. Our methodology incorporates dy-namic object masks to eliminate unstable features and employs ground plane masks for meticulous triangulation. Furthermore, we exploit Geometry-constraint to delineate road regions for scale recovery. The integration of this approach with the mo-nocular version of ORB-SLAM3 culminates in the accurate esti-mation of a road model, a pivotal component in our scale recov-ery process. Rigorous experiments, conducted on the KITTI da-taset, systematically compare our method with existing monocu-lar visual odometry algorithms and contemporary scale recovery methodologies. The results undeniably confirm the superior ef-fectiveness of our approach, surpassing state-of-the-art visual odometry algorithms. Our source code is available at https://git hub.com/bFr0zNq/MVOSegScale.
Abstract:Accurate segmentation of 3D vascular structures is essential for various medical imaging applications. The dispersed nature of vascular structures leads to inherent spatial uncertainty and necessitates location awareness, yet most current 3D medical segmentation models rely on the patch-wise training strategy that usually loses this spatial context. In this study, we introduce the Coordinate-aware Modulated Mamba Network (COMMA) and contribute a manually labeled dataset of 570 cases, the largest publicly available 3D vessel dataset to date. COMMA leverages both entire and cropped patch data through global and local branches, ensuring robust and efficient spatial location awareness. Specifically, COMMA employs a channel-compressed Mamba (ccMamba) block to encode entire image data, capturing long-range dependencies while optimizing computational costs. Additionally, we propose a coordinate-aware modulated (CaM) block to enhance interactions between the global and local branches, allowing the local branch to better perceive spatial information. We evaluate COMMA on six datasets, covering two imaging modalities and five types of vascular tissues. The results demonstrate COMMA's superior performance compared to state-of-the-art methods with computational efficiency, especially in segmenting small vessels. Ablation studies further highlight the importance of our proposed modules and spatial information. The code and data will be open source at https://github.com/shigen-StoneRoot/COMMA.
Abstract:In rehabilitation, powered, and teleoperation exoskeletons, connecting the human body to the exoskeleton through binding attachments is a common configuration. However, the uncertainty of the tightness and the donning deviation of the binding attachments will affect the flexibility and comfort of the exoskeletons, especially during high-speed movement. To address this challenge, this paper presents a flexible exoskeleton control approach with binding alignment and full-arm coordination. Firstly, the sources of the force interaction caused by donning offsets are analyzed, based on which the interactive force data is classified into the major, assistant, coordination, and redundant component categories. Then, a binding alignment strategy (BAS) is proposed to reduce the donning disturbances by combining different force data. Furthermore, we propose a full-arm coordination mechanism (FCM) that focuses on two modes of arm movement intent, joint-oriented and target-oriented, to improve the flexible performance of the whole exoskeleton control during high-speed motion. In this method, we propose an algorithm to distinguish the two intentions to resolve the conflict issue of the force component. Finally, a series of experiments covering various aspects of exoskeleton performance (flexibility, adaptability, accuracy, speed, and fatigue) were conducted to demonstrate the benefits of our control framework in our full-arm exoskeleton.
Abstract:Graphs are able to model interconnected entities in many online services, supporting a wide range of applications on the Web. This raises an important question: How can we train a graph foundational model on multiple source domains and adapt to an unseen target domain? A major obstacle is that graphs from different domains often exhibit divergent characteristics. Some studies leverage large language models to align multiple domains based on textual descriptions associated with the graphs, limiting their applicability to text-attributed graphs. For text-free graphs, a few recent works attempt to align different feature distributions across domains, while generally neglecting structural differences. In this work, we propose a novel Structure Alignment framework for text-free Multi-domain Graph Pre-Training and cross-domain adaptation (SAMGPT). It is designed to learn multi-domain knowledge from graphs originating in multiple source domains, which can then be adapted to address applications in an unseen target domain. Specifically, we introduce a set of structure tokens to harmonize structure-based aggregation across source domains during the pre-training phase. Next, for cross-domain adaptation, we design dual prompts, namely, holistic prompts and specific prompts, which adapt unified multi-domain structural knowledge and fine-grained, domain-specific information, respectively, to a target domain. Finally, we conduct comprehensive experiments on seven public datasets to evaluate and analyze the effectiveness of SAMGPT.
Abstract:Map construction task plays a vital role in providing precise and comprehensive static environmental information essential for autonomous driving systems. Primary sensors include cameras and LiDAR, with configurations varying between camera-only, LiDAR-only, or camera-LiDAR fusion, based on cost-performance considerations. While fusion-based methods typically perform best, existing approaches often neglect modality interaction and rely on simple fusion strategies, which suffer from the problems of misalignment and information loss. To address these issues, we propose MapFusion, a novel multi-modal Bird's-Eye View (BEV) feature fusion method for map construction. Specifically, to solve the semantic misalignment problem between camera and LiDAR BEV features, we introduce the Cross-modal Interaction Transform (CIT) module, enabling interaction between two BEV feature spaces and enhancing feature representation through a self-attention mechanism. Additionally, we propose an effective Dual Dynamic Fusion (DDF) module to adaptively select valuable information from different modalities, which can take full advantage of the inherent information between different modalities. Moreover, MapFusion is designed to be simple and plug-and-play, easily integrated into existing pipelines. We evaluate MapFusion on two map construction tasks, including High-definition (HD) map and BEV map segmentation, to show its versatility and effectiveness. Compared with the state-of-the-art methods, MapFusion achieves 3.6% and 6.2% absolute improvements on the HD map construction and BEV map segmentation tasks on the nuScenes dataset, respectively, demonstrating the superiority of our approach.