Abstract:Lung cancer is a leading cause of cancer-related deaths globally. PET-CT is crucial for imaging lung tumors, providing essential metabolic and anatomical information, while it faces challenges such as poor image quality, motion artifacts, and complex tumor morphology. Deep learning-based models are expected to address these problems, however, existing small-scale and private datasets limit significant performance improvements for these methods. Hence, we introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients. Furthermore, we propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images. Specifically, we design a channel-wise rectification module (CRM) that implements a channel state space block across multi-modal features to learn correlated representations and helps filter out modality-specific noise. A dynamic cross-modality interaction module (DCIM) is designed to effectively integrate position and context information, which employs PET images to learn regional position information and serves as a bridge to assist in modeling the relationships between local features of CT images. Extensive experiments on a comprehensive benchmark demonstrate the effectiveness of our CIPA compared to the current state-of-the-art segmentation methods. We hope our research can provide more exploration opportunities for medical image segmentation. The dataset and code are available at https://github.com/mj129/CIPA.
Abstract:Brain tumors delay the standard preprocessing workflow for further examination. Brain inpainting offers a viable, although difficult, solution for tumor tissue processing, which is necessary to improve the precision of the diagnosis and treatment. Most conventional U-Net-based generative models, however, often face challenges in capturing the complex, nonlinear latent representations inherent in brain imaging. In order to accomplish high-quality healthy brain tissue reconstruction, this work proposes DiffKAN-Inpainting, an innovative method that blends diffusion models with the Kolmogorov-Arnold Networks architecture. During the denoising process, we introduce the RePaint method and tumor information to generate images with a higher fidelity and smoother margin. Both qualitative and quantitative results demonstrate that as compared to the state-of-the-art methods, our proposed DiffKAN-Inpainting inpaints more detailed and realistic reconstructions on the BraTS dataset. The knowledge gained from ablation study provide insights for future research to balance performance with computing cost.
Abstract:The development of deep learning has facilitated the application of person re-identification (ReID) technology in intelligent security. Visible-infrared person re-identification (VI-ReID) aims to match pedestrians across infrared and visible modality images enabling 24-hour surveillance. Current studies relying on unsupervised modality transformations as well as inefficient embedding constraints to bridge the spectral differences between infrared and visible images, however, limit their potential performance. To tackle the limitations of the above approaches, this paper introduces a simple yet effective Spectral Enhancement and Pseudo-anchor Guidance Network, named SEPG-Net. Specifically, we propose a more homogeneous spectral enhancement scheme based on frequency domain information and greyscale space, which avoids the information loss typically caused by inefficient modality transformations. Further, a Pseudo Anchor-guided Bidirectional Aggregation (PABA) loss is introduced to bridge local modality discrepancies while better preserving discriminative identity embeddings. Experimental results on two public benchmark datasets demonstrate the superior performance of SEPG-Net against other state-of-the-art methods. The code is available at https://github.com/1024AILab/ReID-SEPG.
Abstract:Large language models (LLMs) have garnered significant attention for their remarkable capabilities across various domains, whose vast parameter scales present challenges for practical deployment. Structured pruning is an effective method to balance model performance with efficiency, but performance restoration under computational resource constraints is a principal challenge in pruning LLMs. Therefore, we present a low-cost and fast structured pruning method for LLMs named SlimGPT based on the Optimal Brain Surgeon framework. We propose Batched Greedy Pruning for rapid and near-optimal pruning, which enhances the accuracy of head-wise pruning error estimation through grouped Cholesky decomposition and improves the pruning efficiency of FFN via Dynamic Group Size, thereby achieving approximate local optimal pruning results within one hour. Besides, we explore the limitations of layer-wise pruning from the perspective of error accumulation and propose Incremental Pruning Ratio, a non-uniform pruning strategy to reduce performance degradation. Experimental results on the LLaMA benchmark show that SlimGPT outperforms other methods and achieves state-of-the-art results.
Abstract:Video temporal grounding aims to localize relevant temporal boundaries in a video given a textual prompt. Recent work has focused on enabling Video LLMs to perform video temporal grounding via next-token prediction of temporal timestamps. However, accurately localizing timestamps in videos remains challenging for Video LLMs when relying solely on temporal token prediction. Our proposed TimeRefine addresses this challenge in two ways. First, instead of directly predicting the start and end timestamps, we reformulate the temporal grounding task as a temporal refining task: the model first makes rough predictions and then refines them by predicting offsets to the target segment. This refining process is repeated multiple times, through which the model progressively self-improves its temporal localization accuracy. Second, to enhance the model's temporal perception capabilities, we incorporate an auxiliary prediction head that penalizes the model more if a predicted segment deviates further from the ground truth, thus encouraging the model to make closer and more accurate predictions. Our plug-and-play method can be integrated into most LLM-based temporal grounding approaches. The experimental results demonstrate that TimeRefine achieves 3.6% and 5.0% mIoU improvements on the ActivityNet and Charades-STA datasets, respectively. Code and pretrained models will be released.
Abstract:In recommendation systems, the matching stage is becoming increasingly critical, serving as the upper limit for the entire recommendation process. Recently, some studies have started to explore the use of multi-scenario information for recommendations, such as model-based and data-based approaches. However, the matching stage faces significant challenges due to the need for ultra-large-scale retrieval and meeting low latency requirements. As a result, the methods applied at this stage (collaborative filtering and two-tower models) are often designed to be lightweight, hindering the full utilization of extensive information. On the other hand, the ranking stage features the most sophisticated models with the strongest scoring capabilities, but due to the limited screen size of mobile devices, most of the ranked results may not gain exposure or be displayed. In this paper, we introduce an innovative multi-scenario nearline retrieval framework. It operates by harnessing ranking logs from various scenarios through Flink, allowing us to incorporate finely ranked results from other scenarios into our matching stage in near real-time. Besides, we propose a streaming scoring module, which selects a crucial subset from the candidate pool. Implemented on the "Guess You Like" (homepage of the Taobao APP), China's premier e-commerce platform, our method has shown substantial improvements-most notably, a 5% uptick in product transactions. Furthermore, the proposed approach is not only model-free but also highly efficient, suggesting it can be quickly implemented in diverse scenarios and demonstrate promising performance.
Abstract:In medical imaging, the diffusion models have shown great potential in synthetic image generation tasks. However, these models often struggle with the interpretable connections between the generated and existing images and could create illusions. To address these challenges, our research proposes a novel diffusion-based generative model based on deformation diffusion and recovery. This model, named Deformation-Recovery Diffusion Model (DRDM), diverges from traditional score/intensity and latent feature-based approaches, emphasizing morphological changes through deformation fields rather than direct image synthesis. This is achieved by introducing a topological-preserving deformation field generation method, which randomly samples and integrates a set of multi-scale Deformation Vector Fields (DVF). DRDM is trained to learn to recover unreasonable deformation components, thereby restoring each randomly deformed image to a realistic distribution. These innovations facilitate the generation of diverse and anatomically plausible deformations, enhancing data augmentation and synthesis for further analysis in downstream tasks, such as few-shot learning and image registration. Experimental results in cardiac MRI and pulmonary CT show DRDM is capable of creating diverse, large (over 10% image size deformation scale), and high-quality (negative ratio of folding rate is lower than 1%) deformation fields. The further experimental results in downstream tasks, 2D image segmentation and 3D image registration, indicate significant improvements resulting from DRDM, showcasing the potential of our model to advance image manipulation and synthesis in medical imaging and beyond. Our implementation will be available at https://github.com/jianqingzheng/def_diff_rec.
Abstract:Honeypots, as a strategic cyber-deception mechanism designed to emulate authentic interactions and bait unauthorized entities, continue to struggle with balancing flexibility, interaction depth, and deceptive capability despite their evolution over decades. Often they also lack the capability of proactively adapting to an attacker's evolving tactics, which restricts the depth of engagement and subsequent information gathering. Under this context, the emergent capabilities of large language models, in tandem with pioneering prompt-based engineering techniques, offer a transformative shift in the design and deployment of honeypot technologies. In this paper, we introduce HoneyGPT, a pioneering honeypot architecture based on ChatGPT, heralding a new era of intelligent honeypot solutions characterized by their cost-effectiveness, high adaptability, and enhanced interactivity, coupled with a predisposition for proactive attacker engagement. Furthermore, we present a structured prompt engineering framework that augments long-term interaction memory and robust security analytics. This framework, integrating thought of chain tactics attuned to honeypot contexts, enhances interactivity and deception, deepens security analytics, and ensures sustained engagement. The evaluation of HoneyGPT includes two parts: a baseline comparison based on a collected dataset and a field evaluation in real scenarios for four weeks. The baseline comparison demonstrates HoneyGPT's remarkable ability to strike a balance among flexibility, interaction depth, and deceptive capability. The field evaluation further validates HoneyGPT's efficacy, showing its marked superiority in enticing attackers into more profound interactive engagements and capturing a wider array of novel attack vectors in comparison to existing honeypot technologies.
Abstract:Video-language understanding tasks have focused on short video clips, often struggling with long-form video understanding tasks. Recently, many long video-language understanding approaches have leveraged the reasoning capabilities of Large Language Models (LLMs) to perform long video QA, transforming videos into densely sampled frame captions, and asking LLMs to respond to text queries over captions. However, the frames used for captioning are often redundant and contain irrelevant information, making dense sampling inefficient, and ignoring the fact that video QA requires varying levels of granularity, with some video segments being highly relevant to the question (needing more fine-grained detail) while others being less relevant. Thus, these LLM-based approaches are prone to missing information and operate on large numbers of irrelevant captions, lowering both performance and efficiency. To address these issues, we introduce VideoTree, a query-adaptive and hierarchical framework for long-video understanding with LLMs. VideoTree dynamically extracts query-related information from a video and builds a tree-based representation for LLM reasoning. First, VideoTree adaptively selects frames for captioning by iteratively clustering frames based on their visual features and scoring clusters using their relevance to the query. Second, it organizes visual clusters into a query-adaptive and hierarchical tree structure; the tree encodes varying levels of granularity, with higher resolution on relevant segments. Finally, VideoTree produces an answer by traversing the tree's keyframes and passing their captions to an LLM answerer. Our method improves both reasoning accuracy and efficiency compared to existing methods: VideoTree achieves a 7.0%, 2.2%, and 2.7% accuracy gain over baselines on the EgoSchema, NExT-QA, and IntentQA benchmarks, respectively, while reducing inference time by 40%.
Abstract:Image registration, a critical process in medical imaging, involves aligning different sets of medical imaging data into a single unified coordinate system. Deep learning networks, such as the Convolutional Neural Network (CNN)-based VoxelMorph, Vision Transformer (ViT)-based TransMorph, and State Space Model (SSM)-based MambaMorph, have demonstrated effective performance in this domain. The recent Visual State Space Model (VMamba), which incorporates a cross-scan module with SSM, has exhibited promising improvements in modeling global-range dependencies with efficient computational cost in computer vision tasks. This paper hereby introduces an exploration of VMamba with image registration, named VMambaMorph. This novel hybrid VMamba-CNN network is designed specifically for 3D image registration. Utilizing a U-shaped network architecture, VMambaMorph computes the deformation field based on target and source volumes. The VMamba-based block with 2D cross-scan module is redesigned for 3D volumetric feature processing. To overcome the complex motion and structure on multi-modality images, we further propose a fine-tune recursive registration framework. We validate VMambaMorph using a public benchmark brain MR-CT registration dataset, comparing its performance against current state-of-the-art methods. The results indicate that VMambaMorph achieves competitive registration quality. The code for VMambaMorph with all baseline methods is available on GitHub.