Abstract:In the field of vision-language contrastive learning, models such as CLIP capitalize on matched image-caption pairs as positive examples and leverage within-batch non-matching pairs as negatives. This approach has led to remarkable outcomes in zero-shot image classification, cross-modal retrieval, and linear evaluation tasks. We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining. Inspired by CutMix in vision categorization, we create semantically composite image-caption pairs by merging elements from two distinct instances in the dataset via a novel procedure. Our method fuses the captions and blends 50% of each image to form a new composite sample. This simple technique (termed CLIP-C for CLIP Compositions), devoid of any additional computational overhead or increase in model parameters, significantly improves zero-shot image classification and cross-modal retrieval. The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.
Abstract:Comparing a user video to a reference how-to video is a key requirement for AR/VR technology delivering personalized assistance tailored to the user's progress. However, current approaches for language-based assistance can only answer questions about a single video. We propose an approach that first automatically generates large amounts of visual instruction tuning data involving pairs of videos from HowTo100M by leveraging existing step annotations and accompanying narrations, and then trains a video-conditioned language model to jointly reason across multiple raw videos. Our model achieves state-of-the-art performance at identifying differences between video pairs and ranking videos based on the severity of these differences, and shows promising ability to perform general reasoning over multiple videos.
Abstract:Most video captioning models are designed to process short video clips of few seconds and output text describing low-level visual concepts (e.g., objects, scenes, atomic actions). However, most real-world videos last for minutes or hours and have a complex hierarchical structure spanning different temporal granularities. We propose Video ReCap, a recursive video captioning model that can process video inputs of dramatically different lengths (from 1 second to 2 hours) and output video captions at multiple hierarchy levels. The recursive video-language architecture exploits the synergy between different video hierarchies and can process hour-long videos efficiently. We utilize a curriculum learning training scheme to learn the hierarchical structure of videos, starting from clip-level captions describing atomic actions, then focusing on segment-level descriptions, and concluding with generating summaries for hour-long videos. Furthermore, we introduce Ego4D-HCap dataset by augmenting Ego4D with 8,267 manually collected long-range video summaries. Our recursive model can flexibly generate captions at different hierarchy levels while also being useful for other complex video understanding tasks, such as VideoQA on EgoSchema. Data, code, and models are available at: https://sites.google.com/view/vidrecap
Abstract:We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). More than 800 participants from 13 cities worldwide performed these activities in 131 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,422 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources will be open sourced to fuel new research in the community.
Abstract:Long-term activity forecasting is an especially challenging research problem because it requires understanding the temporal relationships between observed actions, as well as the variability and complexity of human activities. Despite relying on strong supervision via expensive human annotations, state-of-the-art forecasting approaches often generalize poorly to unseen data. To alleviate this issue, we propose Multiscale Video Pretraining (MVP), a novel self-supervised pretraining approach that learns robust representations for forecasting by learning to predict contextualized representations of future video clips over multiple timescales. MVP is based on our observation that actions in videos have a multiscale nature, where atomic actions typically occur at a short timescale and more complex actions may span longer timescales. We compare MVP to state-of-the-art self-supervised video learning approaches on downstream long-term forecasting tasks including long-term action anticipation and video summary prediction. Our comprehensive experiments across the Ego4D and Epic-Kitchens-55/100 datasets demonstrate that MVP out-performs state-of-the-art methods by significant margins. Notably, MVP obtains a relative performance gain of over 20% accuracy in video summary forecasting over existing methods.
Abstract:In this paper we present an approach for localizing steps of procedural activities in narrated how-to videos. To deal with the scarcity of labeled data at scale, we source the step descriptions from a language knowledge base (wikiHow) containing instructional articles for a large variety of procedural tasks. Without any form of manual supervision, our model learns to temporally ground the steps of procedural articles in how-to videos by matching three modalities: frames, narrations, and step descriptions. Specifically, our method aligns steps to video by fusing information from two distinct pathways: i) {\em direct} alignment of step descriptions to frames, ii) {\em indirect} alignment obtained by composing steps-to-narrations with narrations-to-video correspondences. Notably, our approach performs global temporal grounding of all steps in an article at once by exploiting order information, and is trained with step pseudo-labels which are iteratively refined and aggressively filtered. In order to validate our model we introduce a new evaluation benchmark -- HT-Step -- obtained by manually annotating a 124-hour subset of HowTo100M\footnote{A test server is accessible at \url{https://eval.ai/web/challenges/challenge-page/2082}.} with steps sourced from wikiHow articles. Experiments on this benchmark as well as zero-shot evaluations on CrossTask demonstrate that our multi-modality alignment yields dramatic gains over several baselines and prior works. Finally, we show that our inner module for matching narration-to-video outperforms by a large margin the state of the art on the HTM-Align narration-video alignment benchmark.
Abstract:Many top-down architectures for instance segmentation achieve significant success when trained and tested on pre-defined closed-world taxonomy. However, when deployed in the open world, they exhibit notable bias towards seen classes and suffer from significant performance drop. In this work, we propose a novel approach for open world instance segmentation called bottom-Up and top-Down Open-world Segmentation (UDOS) that combines classical bottom-up segmentation algorithms within a top-down learning framework. UDOS first predicts parts of objects using a top-down network trained with weak supervision from bottom-up segmentations. The bottom-up segmentations are class-agnostic and do not overfit to specific taxonomies. The part-masks are then fed into affinity-based grouping and refinement modules to predict robust instance-level segmentations. UDOS enjoys both the speed and efficiency from the top-down architectures and the generalization ability to unseen categories from bottom-up supervision. We validate the strengths of UDOS on multiple cross-category as well as cross-dataset transfer tasks from 5 challenging datasets including MS-COCO, LVIS, ADE20k, UVO and OpenImages, achieving significant improvements over state-of-the-art across the board. Our code and models are available on our project page.
Abstract:Video understanding tasks take many forms, from action detection to visual query localization and spatio-temporal grounding of sentences. These tasks differ in the type of inputs (only video, or video-query pair where query is an image region or sentence) and outputs (temporal segments or spatio-temporal tubes). However, at their core they require the same fundamental understanding of the video, i.e., the actors and objects in it, their actions and interactions. So far these tasks have been tackled in isolation with individual, highly specialized architectures, which do not exploit the interplay between tasks. In contrast, in this paper, we present a single, unified model for tackling query-based video understanding in long-form videos. In particular, our model can address all three tasks of the Ego4D Episodic Memory benchmark which entail queries of three different forms: given an egocentric video and a visual, textual or activity query, the goal is to determine when and where the answer can be seen within the video. Our model design is inspired by recent query-based approaches to spatio-temporal grounding, and contains modality-specific query encoders and task-specific sliding window inference that allow multi-task training with diverse input modalities and different structured outputs. We exhaustively analyze relationships among the tasks and illustrate that cross-task learning leads to improved performance on each individual task, as well as the ability to generalize to unseen tasks, such as zero-shot spatial localization of language queries.
Abstract:This technical report describes the EgoTask Translation approach that explores relations among a set of egocentric video tasks in the Ego4D challenge. To improve the primary task of interest, we propose to leverage existing models developed for other related tasks and design a task translator that learns to ''translate'' auxiliary task features to the primary task. With no modification to the baseline architectures, our proposed approach achieves competitive performance on two Ego4D challenges, ranking the 1st in the talking to me challenge and the 3rd in the PNR keyframe localization challenge.
Abstract:Narrated "how-to" videos have emerged as a promising data source for a wide range of learning problems, from learning visual representations to training robot policies. However, this data is extremely noisy, as the narrations do not always describe the actions demonstrated in the video. To address this problem we introduce the novel task of visual narration detection, which entails determining whether a narration is visually depicted by the actions in the video. We propose "What You Say is What You Show" (WYS^2), a method that leverages multi-modal cues and pseudo-labeling to learn to detect visual narrations with only weakly labeled data. We further generalize our approach to operate on only audio input, learning properties of the narrator's voice that hint if they are currently doing what they describe. Our model successfully detects visual narrations in in-the-wild videos, outperforming strong baselines, and we demonstrate its impact for state-of-the-art summarization and alignment of instructional video.