Abstract:The preservation and revitalization of endangered and extinct languages is a meaningful endeavor, conserving cultural heritage while enriching fields like linguistics and anthropology. However, these languages are typically low-resource, making their reconstruction labor-intensive and costly. This challenge is exemplified by N\"ushu, a rare script historically used by Yao women in China for self-expression within a patriarchal society. To address this challenge, we introduce N\"ushuRescue, an AI-driven framework designed to train large language models (LLMs) on endangered languages with minimal data. N\"ushuRescue automates evaluation and expands target corpora to accelerate linguistic revitalization. As a foundational component, we developed NCGold, a 500-sentence N\"ushu-Chinese parallel corpus, the first publicly available dataset of its kind. Leveraging GPT-4-Turbo, with no prior exposure to N\"ushu and only 35 short examples from NCGold, N\"ushuRescue achieved 48.69\% translation accuracy on 50 withheld sentences and generated NCSilver, a set of 98 newly translated modern Chinese sentences of varying lengths. A sample of both NCGold and NCSilver is included in the Supplementary Materials. Additionally, we developed FastText-based and Seq2Seq models to further support research on N\"ushu. N\"ushuRescue provides a versatile and scalable tool for the revitalization of endangered languages, minimizing the need for extensive human input.
Abstract:Handling implicit language is essential for natural language processing systems to achieve precise text understanding and facilitate natural interactions with users. Despite its importance, the absence of a robust metric for accurately measuring the implicitness of language significantly constrains the depth of analysis possible in evaluating models' comprehension capabilities. This paper addresses this gap by developing a scalar metric that quantifies the implicitness level of language without relying on external references. Drawing on principles from traditional linguistics, we define ''implicitness'' as the divergence between semantic meaning and pragmatic interpretation. To operationalize this definition, we introduce ImpScore, a novel, reference-free metric formulated through an interpretable regression model. This model is trained using pairwise contrastive learning on a specially curated dataset comprising $112,580$ (implicit sentence, explicit sentence) pairs. We validate ImpScore through a user study that compares its assessments with human evaluations on out-of-distribution data, demonstrating its accuracy and strong correlation with human judgments. Additionally, we apply ImpScore to hate speech detection datasets, illustrating its utility and highlighting significant limitations in current large language models' ability to understand highly implicit content. The metric model and its training data are available at https://github.com/audreycs/ImpScore.
Abstract:We present knowledge continuity, a novel definition inspired by Lipschitz continuity which aims to certify the robustness of neural networks across input domains (such as continuous and discrete domains in vision and language, respectively). Most existing approaches that seek to certify robustness, especially Lipschitz continuity, lie within the continuous domain with norm and distribution-dependent guarantees. In contrast, our proposed definition yields certification guarantees that depend only on the loss function and the intermediate learned metric spaces of the neural network. These bounds are independent of domain modality, norms, and distribution. We further demonstrate that the expressiveness of a model class is not at odds with its knowledge continuity. This implies that achieving robustness by maximizing knowledge continuity should not theoretically hinder inferential performance. Finally, to complement our theoretical results, we present several applications of knowledge continuity such as regularization, a certification algorithm, and show that knowledge continuity can be used to localize vulnerable components of a neural network.
Abstract:Recent large language models (LLMs) have demonstrated promising capabilities in modeling real-world knowledge and enhancing knowledge-based generation tasks. In this paper, we further explore the potential of using LLMs to aid in the design of soft modular robots, taking into account both user instructions and physical laws, to reduce the reliance on extensive trial-and-error experiments typically needed to achieve robot designs that meet specific structural or task requirements. Specifically, we formulate the robot design process as a sequence generation task and find that LLMs are able to capture key requirements expressed in natural language and reflect them in the construction sequences of robots. To simplify, rather than conducting real-world experiments to assess design quality, we utilize a simulation tool to provide feedback to the generative model, allowing for iterative improvements without requiring extensive human annotations. Furthermore, we introduce five evaluation metrics to assess the quality of robot designs from multiple angles including task completion and adherence to instructions, supporting an automatic evaluation process. Our model performs well in evaluations for designing soft modular robots with uni- and bi-directional locomotion and stair-descending capabilities, highlighting the potential of using natural language and LLMs for robot design. However, we also observe certain limitations that suggest areas for further improvement.
Abstract:The ability for individuals to constructively engage with one another across lines of difference is a critical feature of a healthy pluralistic society. This is also true in online discussion spaces like social media platforms. To date, much social media research has focused on preventing ills -- like political polarization and the spread of misinformation. While this is important, enhancing the quality of online public discourse requires not just reducing ills but also promoting foundational human virtues. In this study, we focus on one particular virtue: ``intellectual humility'' (IH), or acknowledging the potential limitations in one's own beliefs. Specifically, we explore the development of computational methods for measuring IH at scale. We manually curate and validate an IH codebook on 350 posts about religion drawn from subreddits and use them to develop LLM-based models for automating this measurement. Our best model achieves a Macro-F1 score of 0.64 across labels (and 0.70 when predicting IH/IA/Neutral at the coarse level), higher than an expected naive baseline of 0.51 (0.32 for IH/IA/Neutral) but lower than a human annotator-informed upper bound of 0.85 (0.83 for IH/IA/Neutral). Our results both highlight the challenging nature of detecting IH online -- opening the door to new directions in NLP research -- and also lay a foundation for computational social science researchers interested in analyzing and fostering more IH in online public discourse.
Abstract:Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, previous studies identify similar redundancy among LoRA experts within the MoE architecture, highlighting the necessity for non-uniform allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to further mitigate redundancy. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora.
Abstract:This study presents a comprehensive, long-term project to explore the effectiveness of various prompting techniques in detecting dialogical mental manipulation. We implement Chain-of-Thought prompting with Zero-Shot and Few-Shot settings on a binary mental manipulation detection task, building upon existing work conducted with Zero-Shot and Few- Shot prompting. Our primary objective is to decipher why certain prompting techniques display superior performance, so as to craft a novel framework tailored for detection of mental manipulation. Preliminary findings suggest that advanced prompting techniques may not be suitable for more complex models, if they are not trained through example-based learning.
Abstract:In the field of vision-language contrastive learning, models such as CLIP capitalize on matched image-caption pairs as positive examples and leverage within-batch non-matching pairs as negatives. This approach has led to remarkable outcomes in zero-shot image classification, cross-modal retrieval, and linear evaluation tasks. We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining. Inspired by CutMix in vision categorization, we create semantically composite image-caption pairs by merging elements from two distinct instances in the dataset via a novel procedure. Our method fuses the captions and blends 50% of each image to form a new composite sample. This simple technique (termed CLIP-C for CLIP Compositions), devoid of any additional computational overhead or increase in model parameters, significantly improves zero-shot image classification and cross-modal retrieval. The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities in zero-shot learning applications, generating responses to queries using only pre-training information without the need for additional fine-tuning. This represents a significant departure from traditional machine learning approaches. Previous research has indicated that LLMs may exhibit serial position effects, such as primacy and recency biases, which are well-documented cognitive biases in human psychology. Our extensive testing across various tasks and models confirms the widespread occurrence of these effects, although their intensity varies. We also discovered that while carefully designed prompts can somewhat mitigate these biases, their effectiveness is inconsistent. These findings underscore the significance of serial position effects during the inference process, particularly in scenarios where there are no ground truth labels, highlighting the need for greater focus on addressing these effects in LLM applications.
Abstract:LLM-as-a-Judge offers a promising alternative to human judges across various tasks, yet inherent biases, particularly position bias - a systematic preference for answers based on their position in the prompt - compromise its effectiveness. Our study investigates this issue by developing a framework to systematically study and quantify position bias using metrics such as repetitional consistency, positional consistency, and positional fairness. We conduct experiments with 9 judge models across 22 tasks from the MTBench and DevBench benchmarks and nearly 40 answer-generating models, generating approximately 80,000 evaluation instances. This comprehensive assessment reveals significant variations in bias across judges and tasks. Although GPT-4 often excels in positional consistency and fairness, some more cost-effective models perform comparably or even better in specific tasks, highlighting essential trade-offs between consistency, fairness, and cost. Our results also demonstrate high consistency of judgment across repetitions, confirming that position bias is not due to random variations. This research significantly contributes to the field by introducing new concepts for understanding position bias and providing a multi-dimensional framework for evaluation. These insights guide the selection of optimal judge models, enhance benchmark design, and lay the foundation for future research into effective debiasing strategies, ultimately enhancing the reliability of LLM evaluators.