Abstract:While safety mechanisms have significantly progressed in filtering harmful text inputs, MLLMs remain vulnerable to multimodal jailbreaks that exploit their cross-modal reasoning capabilities. We present MIRAGE, a novel multimodal jailbreak framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models (MLLMs). By systematically decomposing the toxic query into environment, role, and action triplets, MIRAGE constructs a multi-turn visual storytelling sequence of images and text using Stable Diffusion, guiding the target model through an engaging detective narrative. This process progressively lowers the model's defences and subtly guides its reasoning through structured contextual cues, ultimately eliciting harmful responses. In extensive experiments on the selected datasets with six mainstream MLLMs, MIRAGE achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines. Moreover, we demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards. These results highlight critical weaknesses in current multimodal safety mechanisms and underscore the urgent need for more robust defences against cross-modal threats.
Abstract:Recent advancements in diffusion models have driven the growth of text-guided image editing tools, enabling precise and iterative modifications of synthesized content. However, as these tools become increasingly accessible, they also introduce significant risks of misuse, emphasizing the critical need for robust attribution methods to ensure content authenticity and traceability. Despite the creative potential of such tools, they pose significant challenges for attribution, particularly in adversarial settings where edits can be layered to obscure an image's origins. We propose LambdaTracer, a novel latent-space attribution method that robustly identifies and differentiates authentic outputs from manipulated ones without requiring any modifications to generative or editing pipelines. By adaptively calibrating reconstruction losses, LambdaTracer remains effective across diverse iterative editing processes, whether automated through text-guided editing tools such as InstructPix2Pix and ControlNet or performed manually with editing software such as Adobe Photoshop. Extensive experiments reveal that our method consistently outperforms baseline approaches in distinguishing maliciously edited images, providing a practical solution to safeguard ownership, creativity, and credibility in the open, fast-evolving AI ecosystems.