Abstract:Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, previous studies identify similar redundancy among LoRA experts within the MoE architecture, highlighting the necessity for non-uniform allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to further mitigate redundancy. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora.
Abstract:The escalating prevalence of diabetes globally underscores the need for diabetes management. Recent research highlights the growing focus on digital biomarkers in diabetes management, with innovations in computational frameworks and noninvasive monitoring techniques using personalized glucose metrics. However, they predominantly focus on insulin dosing and specific glucose values, or with limited attention given to overall glycemic control. This leaves a gap in expanding the scope of digital biomarkers for overall glycemic control in diabetes management. To address such a research gap, we propose GluMarker -- an end-to-end framework for modeling digital biomarkers using broader factors sources to predict glycemic control. Through the assessment and refinement of various machine learning baselines, GluMarker achieves state-of-the-art on Anderson's dataset in predicting next-day glycemic control. Moreover, our research identifies key digital biomarkers for the next day's glycemic control prediction. These identified biomarkers are instrumental in illuminating the daily factors that influence glycemic management, offering vital insights for diabetes care.
Abstract:The global diabetes epidemic highlights the importance of maintaining good glycemic control. Glucose prediction is a fundamental aspect of diabetes management, facilitating real-time decision-making. Recent research has introduced models focusing on long-term glucose trend prediction, which are unsuitable for real-time decision-making and result in delayed responses. Conversely, models designed to respond to immediate glucose level changes cannot analyze glucose variability comprehensively. Moreover, contemporary research generally integrates various physiological parameters (e.g. insulin doses, food intake, etc.), which inevitably raises data privacy concerns. To bridge such a research gap, we propose TimeGlu -- an end-to-end pipeline for short-term glucose prediction solely based on CGM time series data. We implement four baseline methods to conduct a comprehensive comparative analysis of the model's performance. Through extensive experiments on two contrasting datasets (CGM Glucose and Colas dataset), TimeGlu achieves state-of-the-art performance without the need for additional personal data from patients, providing effective guidance for real-world diabetic glucose management.
Abstract:The increasing number of diabetic patients is a serious issue in society today, which has significant negative impacts on people's health and the country's financial expenditures. Because diabetes may develop into potential serious complications, early glucose prediction for diabetic patients is necessary for timely medical treatment. Existing glucose prediction methods typically utilize patients' private data (e.g. age, gender, ethnicity) and physiological parameters (e.g. blood pressure, heart rate) as reference features for glucose prediction, which inevitably leads to privacy protection concerns. Moreover, these models generally focus on either long-term (monthly-based) or short-term (minute-based) predictions. Long-term prediction methods are generally inaccurate because of the external uncertainties that can greatly affect the glucose values, while short-term ones fail to provide timely medical guidance. Based on the above issues, we propose CrossGP, a novel machine-learning framework for cross-day glucose prediction solely based on the patient's external activities without involving any physiological parameters. Meanwhile, we implement three baseline models for comparison. Extensive experiments on Anderson's dataset strongly demonstrate the superior performance of CrossGP and prove its potential for future real-life applications.
Abstract:In the landscape of spatio-temporal data analytics, effective trajectory representation learning is paramount. To bridge the gap of learning accurate representations with efficient and flexible mechanisms, we introduce Efflex, a comprehensive pipeline for transformative graph modeling and representation learning of the large-volume spatio-temporal trajectories. Efflex pioneers the incorporation of a multi-scale k-nearest neighbors (KNN) algorithm with feature fusion for graph construction, marking a leap in dimensionality reduction techniques by preserving essential data features. Moreover, the groundbreaking graph construction mechanism and the high-performance lightweight GCN increase embedding extraction speed by up to 36 times faster. We further offer Efflex in two versions, Efflex-L for scenarios demanding high accuracy, and Efflex-B for environments requiring swift data processing. Comprehensive experimentation with the Porto and Geolife datasets validates our approach, positioning Efflex as the state-of-the-art in the domain. Such enhancements in speed and accuracy highlight the versatility of Efflex, underscoring its wide-ranging potential for deployment in time-sensitive and computationally constrained applications.
Abstract:Trajectory similarity search plays an essential role in autonomous driving, as it enables vehicles to analyze the information and characteristics of different trajectories to make informed decisions and navigate safely in dynamic environments. Existing work on the trajectory similarity search task primarily utilizes sequence-processing algorithms or Recurrent Neural Networks (RNNs), which suffer from the inevitable issues of complicated architecture and heavy training costs. Considering the intricate connections between trajectories, using Graph Neural Networks (GNNs) for data modeling is feasible. However, most methods directly use existing mathematical graph structures as the input instead of constructing specific graphs from certain vehicle trajectory data. This ignores such data's unique and dynamic characteristics. To bridge such a research gap, we propose VeTraSS -- an end-to-end pipeline for Vehicle Trajectory Similarity Search. Specifically, VeTraSS models the original trajectory data into multi-scale graphs, and generates comprehensive embeddings through a novel multi-layer attention-based GNN. The learned embeddings can be used for searching similar vehicle trajectories. Extensive experiments on the Porto and Geolife datasets demonstrate the effectiveness of VeTraSS, where our model outperforms existing work and reaches the state-of-the-art. This demonstrates the potential of VeTraSS for trajectory analysis and safe navigation in self-driving vehicles in the real world.
Abstract:Speech anonymization and de-identification have garnered significant attention recently, especially in the healthcare area including telehealth consultations, patient voiceprint matching, and patient real-time monitoring. Speaker identity classification tasks, which involve recognizing specific speakers from audio to learn identity features, are crucial for de-identification. Since rare studies have effectively combined speech anonymization with identity classification, we propose SAIC - an innovative pipeline for integrating Speech Anonymization and Identity Classification. SAIC demonstrates remarkable performance and reaches state-of-the-art in the speaker identity classification task on the Voxceleb1 dataset, with a top-1 accuracy of 96.1%. Although SAIC is not trained or evaluated specifically on clinical data, the result strongly proves the model's effectiveness and the possibility to generalize into the healthcare area, providing insightful guidance for future work.
Abstract:Talking face generation has gained immense popularity in the computer vision community, with various applications including AR/VR, teleconferencing, digital assistants, and avatars. Traditional methods are mainly audio-driven ones which have to deal with the inevitable resource-intensive nature of audio storage and processing. To address such a challenge, we propose FT2TF - First-Person Statement Text-To-Talking Face Generation, a novel one-stage end-to-end pipeline for talking face generation driven by first-person statement text. Moreover, FT2TF implements accurate manipulation of the facial expressions by altering the corresponding input text. Different from previous work, our model only leverages visual and textual information without any other sources (e.g. audio/landmark/pose) during inference. Extensive experiments are conducted on LRS2 and LRS3 datasets, and results on multi-dimensional evaluation metrics are reported. Both quantitative and qualitative results showcase that FT2TF outperforms existing relevant methods and reaches the state-of-the-art. This achievement highlights our model capability to bridge first-person statements and dynamic face generation, providing insightful guidance for future work.
Abstract:Learning high-quality video representation has shown significant applications in computer vision and remains challenging. Previous work based on mask autoencoders such as ImageMAE and VideoMAE has proven the effectiveness of learning representations in images and videos through reconstruction strategy in the visual modality. However, these models exhibit inherent limitations, particularly in scenarios where extracting features solely from the visual modality proves challenging, such as when dealing with low-resolution and blurry original videos. Based on this, we propose AV-MaskEnhancer for learning high-quality video representation by combining visual and audio information. Our approach addresses the challenge by demonstrating the complementary nature of audio and video features in cross-modality content. Moreover, our result of the video classification task on the UCF101 dataset outperforms the existing work and reaches the state-of-the-art, with a top-1 accuracy of 98.8% and a top-5 accuracy of 99.9%.