Abstract:While 3D generative models have greatly improved artists' workflows, the existing diffusion models for 3D generation suffer from slow generation and poor generalization. To address this issue, we propose a two-stage approach named Hunyuan3D-1.0 including a lite version and a standard version, that both support text- and image-conditioned generation. In the first stage, we employ a multi-view diffusion model that efficiently generates multi-view RGB in approximately 4 seconds. These multi-view images capture rich details of the 3D asset from different viewpoints, relaxing the tasks from single-view to multi-view reconstruction. In the second stage, we introduce a feed-forward reconstruction model that rapidly and faithfully reconstructs the 3D asset given the generated multi-view images in approximately 7 seconds. The reconstruction network learns to handle noises and in-consistency introduced by the multi-view diffusion and leverages the available information from the condition image to efficiently recover the 3D structure. Our framework involves the text-to-image model, i.e., Hunyuan-DiT, making it a unified framework to support both text- and image-conditioned 3D generation. Our standard version has 3x more parameters than our lite and other existing model. Our Hunyuan3D-1.0 achieves an impressive balance between speed and quality, significantly reducing generation time while maintaining the quality and diversity of the produced assets.
Abstract:Class-incremental semantic segmentation (CSS) requires that a model learn to segment new classes without forgetting how to segment previous ones: this is typically achieved by distilling the current knowledge and incorporating the latest data. However, bypassing iterative distillation by directly transferring outputs of initial classes to the current learning task is not supported in existing class-specific CSS methods. Via Softmax, they enforce dependency between classes and adjust the output distribution at each learning step, resulting in a large probability distribution gap between initial and current tasks. We introduce a simple, yet effective Class Independent Transformation (CIT) that converts the outputs of existing semantic segmentation models into class-independent forms with negligible cost or performance loss. By utilizing class-independent predictions facilitated by CIT, we establish an accumulative distillation framework, ensuring equitable incorporation of all class information. We conduct extensive experiments on various segmentation architectures, including DeepLabV3, Mask2Former, and SegViTv2. Results from these experiments show minimal task forgetting across different datasets, with less than 5% for ADE20K in the most challenging 11 task configurations and less than 1% across all configurations for the PASCAL VOC 2012 dataset.
Abstract:Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness. However, current training recipes lack robust CoT reasoning data, relying on datasets dominated by short annotations with minimal rationales. In this work, we show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses. To address this, we propose a two-fold approach. First, we distill rationales from GPT-4o model to enrich the training data and fine-tune VLMs, boosting their CoT performance. Second, we apply reinforcement learning to further calibrate reasoning quality. Specifically, we construct positive (correct) and negative (incorrect) pairs of model-generated reasoning chains, by comparing their predictions with annotated short answers. Using this pairwise data, we apply the Direct Preference Optimization algorithm to refine the model's reasoning abilities. Our experiments demonstrate significant improvements in CoT reasoning on benchmark datasets and better generalization to direct answer prediction as well. This work emphasizes the importance of incorporating detailed rationales in training and leveraging reinforcement learning to strengthen the reasoning capabilities of VLMs.
Abstract:In this paper, we present ReeFRAME, a scalable Reeb graph-based framework designed to analyze vast volumes of GPS-enabled human trajectory data generated at 1Hz frequency. ReeFRAME models Patterns-of-life (PoL) at both the population and individual levels, utilizing Multi-Agent Reeb Graphs (MARGs) for population-level patterns and Temporal Reeb Graphs (TERGs) for individual trajectories. The framework's linear algorithmic complexity relative to the number of time points ensures scalability for anomaly detection. We validate ReeFRAME on six large-scale anomaly detection datasets, simulating real-time patterns with up to 500,000 agents over two months.
Abstract:While advancements in NLP have significantly improved the performance of Large Language Models (LLMs) on tasks requiring vertical thinking, their lateral thinking capabilities remain under-explored and challenging to measure due to the complexity of assessing creative thought processes and the scarcity of relevant data. To address these challenges, we introduce SPLAT, a benchmark leveraging Situation Puzzles to evaluate and elicit LAteral Thinking of LLMs. This benchmark, containing 975 graded situation puzzles across three difficulty levels, employs a new multi-turn player-judge framework instead of the traditional model-based evaluation, which often necessitates a stronger evaluation model. This framework simulates an interactive game where the model (player) asks the evaluation model (judge) questions about an incomplete story to infer the full scenario. The judge answers based on a detailed reference scenario or evaluates if the player's predictions align with the reference one. This approach lessens dependence on more robust evaluation models, enabling the assessment of state-of-the-art LLMs. The experiments demonstrate that a robust evaluation model, such as WizardLM-2, closely matches human judgements in both intermediate question-answering and final scenario accuracy, achieving over 80% agreement-similar to the agreement levels among humans. Furthermore, applying data and reasoning processes from our benchmark to other lateral thinking-related benchmarks, e.g., RiddleSense and BrainTeaser, leads to performance enhancements. This suggests that our benchmark effectively evaluates and elicits the lateral thinking abilities of LLMs. Code is available at: https://github.com/chenqi008/LateralThinking.
Abstract:This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we develop a data engine that efficiently generates 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long, based on human-annotated data. This is currently the largest egocentric QA dataset. Second, we contribute a challenging egocentric QA benchmark with 629 videos and 7,026 questions to evaluate the models' ability in recognizing and memorizing visual details across videos of varying lengths. We introduce a new de-biasing evaluation method to help mitigate the unavoidable language bias present in the models being evaluated. Third, we propose a specialized multimodal architecture featuring a novel "Memory Pointer Prompting" mechanism. This design includes a global glimpse step to gain an overarching understanding of the entire video and identify key visual information, followed by a fallback step that utilizes the key visual information to generate responses. This enables the model to more effectively comprehend extended video content. With the data, benchmark, and model, we successfully build MM-Ego, an egocentric multimodal LLM that shows powerful performance on egocentric video understanding.
Abstract:In various scientific and engineering fields, the primary research areas have revolved around physics-based dynamical systems modeling and data-driven time series analysis. According to the embedding theory, dynamical systems and time series can be mutually transformed using observation functions and physical reconstruction techniques. Based on this, we propose Embedding Duality Theory, where the parameterized embedding layer essentially provides a linear estimation of the non-linear time series dynamics. This theory enables us to bypass the parameterized embedding layer and directly employ physical reconstruction techniques to acquire a data embedding representation. Utilizing physical priors results in a 10X reduction in parameters, a 3X increase in speed, and maximum performance boosts of 18% in expert, 22% in few-shot, and 53\% in zero-shot tasks without any hyper-parameter tuning. All methods are encapsulated as a plug-and-play module
Abstract:Tokenizer is an essential component for large language models (LLMs), and a tokenizer with a high compression rate can improve the model's representation and processing efficiency. However, the tokenizer cannot ensure high compression rate in all scenarios, and an increase in the average input and output lengths will increases the training and inference costs of the model. Therefore, it is crucial to find ways to improve the model's efficiency with minimal cost while maintaining the model's performance. In this work, we propose a method to improve model representation and processing efficiency by replacing the tokenizers of LLMs. We propose replacing and reinitializing the parameters of the model's input and output layers with the parameters of the original model, and training these parameters while keeping other parameters fixed. We conducted experiments on different LLMs, and the results show that our method can maintain the performance of the model after replacing the tokenizer, while significantly improving the decoding speed for long texts.
Abstract:Recent advancements in multimodal models highlight the value of rewritten captions for improving performance, yet key challenges remain. For example, while synthetic captions often provide superior quality and image-text alignment, it is not clear whether they can fully replace AltTexts: the role of synthetic captions and their interaction with original web-crawled AltTexts in pre-training is still not well understood. Moreover, different multimodal foundation models may have unique preferences for specific caption formats, but efforts to identify the optimal captions for each model remain limited. In this work, we propose a novel, controllable, and scalable captioning pipeline designed to generate diverse caption formats tailored to various multimodal models. By examining Short Synthetic Captions (SSC) towards Dense Synthetic Captions (DSC+) as case studies, we systematically explore their effects and interactions with AltTexts across models such as CLIP, multimodal LLMs, and diffusion models. Our findings reveal that a hybrid approach that keeps both synthetic captions and AltTexts can outperform the use of synthetic captions alone, improving both alignment and performance, with each model demonstrating preferences for particular caption formats. This comprehensive analysis provides valuable insights into optimizing captioning strategies, thereby advancing the pre-training of multimodal foundation models.
Abstract:Contrastive Language-Image Pre-training (CLIP) has been a celebrated method for training vision encoders to generate image/text representations facilitating various applications. Recently, CLIP has been widely adopted as the vision backbone of multimodal large language models (MLLMs) to connect image inputs for language interactions. The success of CLIP as a vision-language foundation model relies on aligning web-crawled noisy text annotations at image levels. Nevertheless, such criteria may become insufficient for downstream tasks in need of fine-grained vision representations, especially when region-level understanding is demanding for MLLMs. In this paper, we improve the localization capability of CLIP with several advances. We propose a pre-training method called Contrastive Localized Language-Image Pre-training (CLOC) by complementing CLIP with region-text contrastive loss and modules. We formulate a new concept, promptable embeddings, of which the encoder produces image embeddings easy to transform into region representations given spatial hints. To support large-scale pre-training, we design a visually-enriched and spatially-localized captioning framework to effectively generate region-text pseudo-labels at scale. By scaling up to billions of annotated images, CLOC enables high-quality regional embeddings for image region recognition and retrieval tasks, and can be a drop-in replacement of CLIP to enhance MLLMs, especially on referring and grounding tasks.