Abstract:We introduce rStar2-Agent, a 14B math reasoning model trained with agentic reinforcement learning to achieve frontier-level performance. Beyond current long CoT, the model demonstrates advanced cognitive behaviors, such as thinking carefully before using Python coding tools and reflecting on code execution feedback to autonomously explore, verify, and refine intermediate steps in complex problem-solving. This capability is enabled through three key innovations that makes agentic RL effective at scale: (i) an efficient RL infrastructure with a reliable Python code environment that supports high-throughput execution and mitigates the high rollout costs, enabling training on limited GPU resources (64 MI300X GPUs); (ii) GRPO-RoC, an agentic RL algorithm with a Resample-on-Correct rollout strategy that addresses the inherent environment noises from coding tools, allowing the model to reason more effectively in a code environment; (iii) An efficient agent training recipe that starts with non-reasoning SFT and progresses through multi-RL stages, yielding advanced cognitive abilities with minimal compute cost. To this end, rStar2-Agent boosts a pre-trained 14B model to state of the art in only 510 RL steps within one week, achieving average pass@1 scores of 80.6% on AIME24 and 69.8% on AIME25, surpassing DeepSeek-R1 (671B) with significantly shorter responses. Beyond mathematics, rStar2-Agent-14B also demonstrates strong generalization to alignment, scientific reasoning, and agentic tool-use tasks. Code and training recipes are available at https://github.com/microsoft/rStar.
Abstract:Origin-Destination (OD) flow matrices are essential for urban mobility analysis, underpinning applications in traffic forecasting, infrastructure planning, and policy design. However, existing methods suffer from two critical limitations: (1) reliance on auxiliary features (e.g., Points of Interest, socioeconomic statistics) that are costly to collect and have limited spatial coverage; and (2) sensitivity to spatial topology, where minor index reordering of urban regions (e.g., census tract relabeling) disrupts structural coherence in generated flows. To address these challenges, we propose Sat2Flow, a latent structure-aware diffusion-based framework that generates structurally coherent OD flows using solely satellite imagery as input. Our approach introduces a multi-kernel encoder to capture diverse regional interactions and employs a permutation-aware diffusion process that aligns latent representations across different regional orderings. Through a joint contrastive training objective that bridges satellite-derived features with OD patterns, combined with equivariant diffusion training that enforces structural consistency, Sat2Flow ensures topological robustness under arbitrary regional reindexing. Experimental results on real-world urban datasets demonstrate that Sat2Flow outperforms both physics-based and data-driven baselines in numerical accuracy while preserving empirical distributions and spatial structures under index permutations. Sat2Flow offers a globally scalable solution for OD flow generation in data-scarce urban environments, eliminating region-specific auxiliary data dependencies while maintaining structural invariance for robust mobility modeling.
Abstract:In this paper, we present a novel framework for video-to-4D generation that creates high-quality dynamic 3D content from single video inputs. Direct 4D diffusion modeling is extremely challenging due to costly data construction and the high-dimensional nature of jointly representing 3D shape, appearance, and motion. We address these challenges by introducing a Direct 4DMesh-to-GS Variation Field VAE that directly encodes canonical Gaussian Splats (GS) and their temporal variations from 3D animation data without per-instance fitting, and compresses high-dimensional animations into a compact latent space. Building upon this efficient representation, we train a Gaussian Variation Field diffusion model with temporal-aware Diffusion Transformer conditioned on input videos and canonical GS. Trained on carefully-curated animatable 3D objects from the Objaverse dataset, our model demonstrates superior generation quality compared to existing methods. It also exhibits remarkable generalization to in-the-wild video inputs despite being trained exclusively on synthetic data, paving the way for generating high-quality animated 3D content. Project page: https://gvfdiffusion.github.io/.
Abstract:Automated detection of small and rare wildlife in aerial imagery is crucial for effective conservation, yet remains a significant technical challenge. Prairie dogs exemplify this issue: their ecological importance as keystone species contrasts sharply with their elusive presence--marked by small size, sparse distribution, and subtle visual features--which undermines existing detection approaches. To address these challenges, we propose RareSpot, a robust detection framework integrating multi-scale consistency learning and context-aware augmentation. Our multi-scale consistency approach leverages structured alignment across feature pyramids, enhancing fine-grained object representation and mitigating scale-related feature loss. Complementarily, context-aware augmentation strategically synthesizes challenging training instances by embedding difficult-to-detect samples into realistic environmental contexts, significantly boosting model precision and recall. Evaluated on an expert-annotated prairie dog drone imagery benchmark, our method achieves state-of-the-art performance, improving detection accuracy by over 35% compared to baseline methods. Importantly, it generalizes effectively across additional wildlife datasets, demonstrating broad applicability. The RareSpot benchmark and approach not only support critical ecological monitoring but also establish a new foundation for detecting small, rare species in complex aerial scenes.
Abstract:3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
Abstract:Zero-shot stance detection (ZSSD) aims to identify the stance of text toward previously unseen targets, a setting where conventional supervised models often fail due to reliance on labeled data and shallow lexical cues. Inspired by human cognitive reasoning, we propose the Cognitive Inductive Reasoning Framework (CIRF), which abstracts transferable reasoning schemas from unlabeled text and encodes them as concept-level logic. To integrate these schemas with input arguments, we introduce a Schema-Enhanced Graph Kernel Model (SEGKM) that dynamically aligns local and global reasoning structures. Experiments on SemEval-2016, VAST, and COVID-19-Stance benchmarks show that CIRF establishes new state-of-the-art results, outperforming strong ZSSD baselines by 1.0, 4.5, and 3.3 percentage points in macro-F1, respectively, and achieving comparable accuracy with 70\% fewer labeled examples. We will release the full code upon publication.
Abstract:Assessment of children's speaking fluency in education is well researched for majority languages, but remains highly challenging for low resource languages. This paper proposes a system to automatically assess fluency by combining a fine-tuned multilingual ASR model, an objective metrics extraction stage, and a generative pre-trained transformer (GPT) network. The objective metrics include phonetic and word error rates, speech rate, and speech-pause duration ratio. These are interpreted by a GPT-based classifier guided by a small set of human-evaluated ground truth examples, to score fluency. We evaluate the proposed system on a dataset of children's speech in two low-resource languages, Tamil and Malay and compare the classification performance against Random Forest and XGBoost, as well as using ChatGPT-4o to predict fluency directly from speech input. Results demonstrate that the proposed approach achieves significantly higher accuracy than multimodal GPT or other methods.
Abstract:We introduce MiniMax-Speech, an autoregressive Transformer-based Text-to-Speech (TTS) model that generates high-quality speech. A key innovation is our learnable speaker encoder, which extracts timbre features from a reference audio without requiring its transcription. This enables MiniMax-Speech to produce highly expressive speech with timbre consistent with the reference in a zero-shot manner, while also supporting one-shot voice cloning with exceptionally high similarity to the reference voice. In addition, the overall quality of the synthesized audio is enhanced through the proposed Flow-VAE. Our model supports 32 languages and demonstrates excellent performance across multiple objective and subjective evaluations metrics. Notably, it achieves state-of-the-art (SOTA) results on objective voice cloning metrics (Word Error Rate and Speaker Similarity) and has secured the top position on the public TTS Arena leaderboard. Another key strength of MiniMax-Speech, granted by the robust and disentangled representations from the speaker encoder, is its extensibility without modifying the base model, enabling various applications such as: arbitrary voice emotion control via LoRA; text to voice (T2V) by synthesizing timbre features directly from text description; and professional voice cloning (PVC) by fine-tuning timbre features with additional data. We encourage readers to visit https://minimax-ai.github.io/tts_tech_report for more examples.
Abstract:As a fundamental task in Information Retrieval and Computational Linguistics, sentence representation has profound implications for a wide range of practical applications such as text clustering, content analysis, question-answering systems, and web search. Recent advances in pre-trained language models (PLMs) have driven remarkable progress in this field, particularly through unsupervised embedding derivation methods centered on discriminative PLMs like BERT. However, due to time and computational constraints, few efforts have attempted to integrate unsupervised sentence representation with generative PLMs, which typically possess much larger parameter sizes. Given that state-of-the-art models in both academia and industry are predominantly based on generative architectures, there is a pressing need for an efficient unsupervised text representation framework tailored to decoder-only PLMs. To address this concern, we propose CSE-SFP, an innovative method that exploits the structural characteristics of generative models. Compared to existing strategies, CSE-SFP requires only a single forward pass to perform effective unsupervised contrastive learning. Rigorous experimentation demonstrates that CSE-SFP not only produces higher-quality embeddings but also significantly reduces both training time and memory consumption. Furthermore, we introduce two ratio metrics that jointly assess alignment and uniformity, thereby providing a more robust means for evaluating the semantic spatial properties of encoding models.
Abstract:Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.