Abstract:Given an isolated garment image in a canonical product view and a separate image of a person, the virtual try-on task aims to generate a new image of the person wearing the target garment. Prior virtual try-on works face two major challenges in achieving this goal: a) the paired (human, garment) training data has limited availability; b) generating textures on the human that perfectly match that of the prompted garment is difficult, often resulting in distorted text and faded textures. Our work explores ways to tackle these issues through both synthetic data as well as model refinement. We introduce a garment extraction model that generates (human, synthetic garment) pairs from a single image of a clothed individual. The synthetic pairs can then be used to augment the training of virtual try-on. We also propose an Error-Aware Refinement-based Schr\"odinger Bridge (EARSB) that surgically targets localized generation errors for correcting the output of a base virtual try-on model. To identify likely errors, we propose a weakly-supervised error classifier that localizes regions for refinement, subsequently augmenting the Schr\"odinger Bridge's noise schedule with its confidence heatmap. Experiments on VITON-HD and DressCode-Upper demonstrate that our synthetic data augmentation enhances the performance of prior work, while EARSB improves the overall image quality. In user studies, our model is preferred by the users in an average of 59% of cases.
Abstract:Low-rank adapters enable fine-tuning of large models with only a small number of parameters, thus reducing storage costs and minimizing the risk of catastrophic forgetting. However, they often pose optimization challenges, with poor convergence. To overcome these challenges, we introduce an over-parameterized approach that accelerates training without increasing inference costs. This method reparameterizes low-rank adaptation by employing a separate MLP and learned embedding for each layer. The learned embedding is input to the MLP, which generates the adapter parameters. Such overparamaterization has been shown to implicitly function as an adaptive learning rate and momentum, accelerating optimization. At inference time, the MLP can be discarded, leaving behind a standard low-rank adapter. To study the effect of MLP overparameterization on a small yet difficult proxy task, we implement it for matrix factorization, and find it achieves faster convergence and lower final loss. Extending this approach to larger-scale tasks, we observe consistent performance gains across domains. We achieve improvements in vision-language tasks and especially notable increases in image generation, with CMMD scores improving by up to 15 points.
Abstract:Spatial perception is a fundamental component of intelligence. While many studies highlight that large multimodal language models (MLMs) struggle to reason about space, they only test for static spatial reasoning, such as categorizing the relative positions of objects. Meanwhile, real-world deployment requires dynamic capabilities like perspective-taking and egocentric action recognition. As a roadmap to improving spatial intelligence, we introduce SAT, Spatial Aptitude Training, which goes beyond static relative object position questions to the more dynamic tasks. SAT contains 218K question-answer pairs for 22K synthetic scenes across a training and testing set. Generated using a photo-realistic physics engine, our dataset can be arbitrarily scaled and easily extended to new actions, scenes, and 3D assets. We find that even MLMs that perform relatively well on static questions struggle to accurately answer dynamic spatial questions. Further, we show that SAT instruction-tuning data improves not only dynamic spatial reasoning on SAT, but also zero-shot performance on existing real-image spatial benchmarks: $23\%$ on CVBench, $8\%$ on the harder BLINK benchmark, and $18\%$ on VSR. When instruction-tuned on SAT, our 13B model matches larger proprietary MLMs like GPT4-V and Gemini-3-1.0 in spatial reasoning. Our data/code is available at http://arijitray1993.github.io/SAT/ .
Abstract:Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains. Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results. However, it remains unclear if DG finetuning methods are becoming better over time, or if improved benchmark performance is simply an artifact of stronger pre-training. Prior studies have shown that perceptual similarity to pre-training data correlates with zero-shot performance, but we find the effect limited in the DG setting. Instead, we posit that having perceptually similar data in pretraining is not enough; and that it is how well these data were learned that determines performance. This leads us to introduce the Alignment Hypothesis, which states that the final DG performance will be high if and only if alignment of image and class label text embeddings is high. Our experiments confirm the Alignment Hypothesis is true, and we use it as an analysis tool of existing DG methods evaluated on DomainBed datasets by splitting evaluation data into In-pretraining (IP) and Out-of-pretraining (OOP). We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP. Put together, our findings highlight the need for DG methods which can generalize beyond pretraining alignment.
Abstract:Incremental learning aims to adapt to new sets of categories over time with minimal computational overhead. Prior work often addresses this task by training efficient task-specific adaptors that modify frozen layer weights or features to capture relevant information without affecting predictions on previously learned categories. While these adaptors are generally more efficient than finetuning the entire network, they still require tens to hundreds of thousands of task-specific trainable parameters even for relatively small networks, making it challenging to operate on resource-constrained environments with high communication costs like edge devices or mobile phones. Thus, we propose Reparameterized, Compact weight Adaptation for Sequential Tasks (RECAST), a novel method that dramatically reduces task-specific trainable parameters to fewer than 50 - several orders of magnitude less than competing methods like LoRA. RECAST accomplishes this efficiency by learning to decompose layer weights into a soft parameter-sharing framework consisting of shared weight templates and very few module-specific scaling factors or coefficients. This soft parameter-sharing framework allows for effective task-wise reparameterization by tuning only these coefficients while keeping templates frozen.A key innovation of RECAST is the novel weight reconstruction pipeline called Neural Mimicry, which eliminates the need for pretraining from scratch. This allows for high-fidelity emulation of existing pretrained weights within our framework and provides quick adaptability to any model scale and architecture. Extensive experiments across six datasets demonstrate RECAST outperforms the state-of-the-art by up to 3% across various scales, architectures, and parameter spaces Moreover, we show that RECAST's architecture-agnostic nature allows for seamless integration with existing methods, further boosting performance.
Abstract:Immersive scene generation, notably panorama creation, benefits significantly from the adaptation of large pre-trained text-to-image (T2I) models for multi-view image generation. Due to the high cost of acquiring multi-view images, tuning-free generation is preferred. However, existing methods are either limited to simple correspondences or require extensive fine-tuning to capture complex ones. We present PanoFree, a novel method for tuning-free multi-view image generation that supports an extensive array of correspondences. PanoFree sequentially generates multi-view images using iterative warping and inpainting, addressing the key issues of inconsistency and artifacts from error accumulation without the need for fine-tuning. It improves error accumulation by enhancing cross-view awareness and refines the warping and inpainting processes via cross-view guidance, risky area estimation and erasing, and symmetric bidirectional guided generation for loop closure, alongside guidance-based semantic and density control for scene structure preservation. In experiments on Planar, 360{\deg}, and Full Spherical Panoramas, PanoFree demonstrates significant error reduction, improves global consistency, and boosts image quality without extra fine-tuning. Compared to existing methods, PanoFree is up to 5x more efficient in time and 3x more efficient in GPU memory usage, and maintains superior diversity of results (2x better in our user study). PanoFree offers a viable alternative to costly fine-tuning or the use of additional pre-trained models. Project website at https://panofree.github.io/.
Abstract:Mobile app user interfaces (UIs) are rich with action, text, structure, and image content that can be utilized to learn generic UI representations for tasks like automating user commands, summarizing content, and evaluating the accessibility of user interfaces. Prior work has learned strong visual representations with local or global captioning losses, but fails to retain both granularities. To combat this, we propose Textual Foresight, a novel pretraining objective for learning UI screen representations. Textual Foresight generates global text descriptions of future UI states given a current UI and local action taken. Our approach requires joint reasoning over elements and entire screens, resulting in improved UI features: on generation tasks, UI agents trained with Textual Foresight outperform state-of-the-art by 2% with 28x fewer images. We train with our newly constructed mobile app dataset, OpenApp, which results in the first public dataset for app UI representation learning. OpenApp enables new baselines, and we find Textual Foresight improves average task performance over them by 5.7% while having access to 2x less data.
Abstract:Online content is filled with logos, from ads and social media posts to website branding and product placements. Consequently, these logos are prevalent in the extensive web-scraped datasets used to pretrain Vision-Language Models, which are used for a wide array of tasks (content moderation, object classification). While these models have been shown to learn harmful correlations in various tasks, whether these correlations include logos remains understudied. Understanding this is especially important due to logos often being used by public-facing entities like brands and government agencies. To that end, we develop SLANT: A Spurious Logo ANalysis Toolkit. Our key finding is that some logos indeed lead to spurious incorrect predictions, for example, adding the Adidas logo to a photo of a person causes a model classify the person as greedy. SLANT contains a semi-automatic mechanism for mining such "spurious" logos. The mechanism consists of a comprehensive logo bank, CC12M-LogoBank, and an algorithm that searches the bank for logos that VLMs spuriously correlate with a user-provided downstream recognition target. We uncover various seemingly harmless logos that VL models correlate 1) with negative human adjectives 2) with the concept of `harmlessness'; causing models to misclassify harmful online content as harmless, and 3) with user-provided object concepts; causing lower recognition accuracy on ImageNet zero-shot classification. Furthermore, SLANT's logos can be seen as effective attacks against foundational models; an attacker could place a spurious logo on harmful content, causing the model to misclassify it as harmless. This threat is alarming considering the simplicity of logo attacks, increasing the attack surface of VL models. As a defense, we include in our Toolkit two effective mitigation strategies that seamlessly integrate with zero-shot inference of foundation models.
Abstract:Multi-Channel Imaging (MCI) contains an array of challenges for encoding useful feature representations not present in traditional images. For example, images from two different satellites may both contain RGB channels, but the remaining channels can be different for each imaging source. Thus, MCI models must support a variety of channel configurations at test time. Recent work has extended traditional visual encoders for MCI, such as Vision Transformers (ViT), by supplementing pixel information with an encoding representing the channel configuration. However, these methods treat each channel equally, i.e., they do not consider the unique properties of each channel type, which can result in needless and potentially harmful redundancies in the learned features. For example, if RGB channels are always present, the other channels can focus on extracting information that cannot be captured by the RGB channels. To this end, we propose DiChaViT, which aims to enhance the diversity in the learned features of MCI-ViT models. This is achieved through a novel channel sampling strategy that encourages the selection of more distinct channel sets for training. Additionally, we employ regularization and initialization techniques to increase the likelihood that new information is learned from each channel. Many of our improvements are architecture agnostic and could be incorporated into new architectures as they are developed. Experiments on both satellite and cell microscopy datasets, CHAMMI, JUMP-CP, and So2Sat, report DiChaViT yields a 1.5-5.0% gain over the state-of-the-art.
Abstract:Long video question answering is a challenging task that involves recognizing short-term activities and reasoning about their fine-grained relationships. State-of-the-art video Large Language Models (vLLMs) hold promise as a viable solution due to their demonstrated emergent capabilities on new tasks. However, despite being trained on millions of short seconds-long videos, vLLMs are unable to understand minutes-long videos and accurately answer questions about them. To address this limitation, we propose a lightweight and self-supervised approach, Key frame-conditioned long video-LLM (Koala), that introduces learnable spatiotemporal queries to adapt pretrained vLLMs for generalizing to longer videos. Our approach introduces two new tokenizers that condition on visual tokens computed from sparse video key frames for understanding short and long video moments. We train our proposed approach on HowTo100M and demonstrate its effectiveness on zero-shot long video understanding benchmarks, where it outperforms state-of-the-art large models by 3 - 6% in absolute accuracy across all tasks. Surprisingly, we also empirically show that our approach not only helps a pretrained vLLM to understand long videos but also improves its accuracy on short-term action recognition.