Abstract:The increasing frequency of suicidal thoughts highlights the importance of early detection and intervention. Social media platforms, where users often share personal experiences and seek help, could be utilized to identify individuals at risk. However, the large volume of daily posts makes manual review impractical. This paper explores the use of Large Language Models (LLMs) to automatically detect suicidal content in text-based social media posts. We propose a novel method for generating pseudo-labels for unlabeled data by prompting LLMs, along with traditional classification fine-tuning techniques to enhance label accuracy. To create a strong suicide detection model, we develop an ensemble approach involving prompting with Qwen2-72B-Instruct, and using fine-tuned models such as Llama3-8B, Llama3.1-8B, and Gemma2-9B. We evaluate our approach on the dataset of the Suicide Ideation Detection on Social Media Challenge, a track of the IEEE Big Data 2024 Big Data Cup. Additionally, we conduct a comprehensive analysis to assess the impact of different models and fine-tuning strategies on detection performance. Experimental results show that the ensemble model significantly improves the detection accuracy, by 5% points compared with the individual models. It achieves a weight F1 score of 0.770 on the public test set, and 0.731 on the private test set, providing a promising solution for identifying suicidal content in social media. Our analysis shows that the choice of LLMs affects the prompting performance, with larger models providing better accuracy. Our code and checkpoints are publicly available at https://github.com/khanhvynguyen/Suicide_Detection_LLMs.
Abstract:Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
Abstract:Multi-Channel Imaging (MCI) contains an array of challenges for encoding useful feature representations not present in traditional images. For example, images from two different satellites may both contain RGB channels, but the remaining channels can be different for each imaging source. Thus, MCI models must support a variety of channel configurations at test time. Recent work has extended traditional visual encoders for MCI, such as Vision Transformers (ViT), by supplementing pixel information with an encoding representing the channel configuration. However, these methods treat each channel equally, i.e., they do not consider the unique properties of each channel type, which can result in needless and potentially harmful redundancies in the learned features. For example, if RGB channels are always present, the other channels can focus on extracting information that cannot be captured by the RGB channels. To this end, we propose DiChaViT, which aims to enhance the diversity in the learned features of MCI-ViT models. This is achieved through a novel channel sampling strategy that encourages the selection of more distinct channel sets for training. Additionally, we employ regularization and initialization techniques to increase the likelihood that new information is learned from each channel. Many of our improvements are architecture agnostic and could be incorporated into new architectures as they are developed. Experiments on both satellite and cell microscopy datasets, CHAMMI, JUMP-CP, and So2Sat, report DiChaViT yields a 1.5-5.0% gain over the state-of-the-art.
Abstract:Noisy labels can impair model performance, making the study of learning with noisy labels an important topic. Two conventional approaches are noise modeling and noise detection. However, these two methods are typically studied independently, and there has been limited work on their collaboration. In this work, we explore the integration of these two approaches, proposing an interconnected structure with three crucial blocks: noise modeling, source knowledge identification, and enhanced noise detection using noise source-knowledge-integration methods. This collaboration structure offers advantages such as discriminating hard negatives and preserving genuinely clean labels that might be suspiciously noisy. Our experiments on four datasets, featuring three types of noise and different combinations of each block, demonstrate the efficacy of these components' collaboration. Our collaborative structure methods achieve up to a 10% increase in top-1 classification accuracy in synthesized noise datasets and 3-5% in real-world noisy datasets. The results also suggest that these components make distinct contributions to overall performance across various noise scenarios. These findings provide valuable insights for designing noisy label learning methods customized for specific noise scenarios in the future. Our code is accessible to the public.
Abstract:Most deep neural networks are trained under fixed network architectures and require retraining when the architecture changes. If expanding the network's size is needed, it is necessary to retrain from scratch, which is expensive. To avoid this, one can grow from a small network by adding random weights over time to gradually achieve the target network size. However, this naive approach falls short in practice as it brings too much noise to the growing process. Prior work tackled this issue by leveraging the already learned weights and training data for generating new weights through conducting a computationally expensive analysis step. In this paper, we introduce MixtureGrowth, a new approach to growing networks that circumvents the initialization overhead in prior work. Before growing, each layer in our model is generated with a linear combination of parameter templates. Newly grown layer weights are generated by using a new linear combination of existing templates for a layer. On one hand, these templates are already trained for the task, providing a strong initialization. On the other, the new coefficients provide flexibility for the added layer weights to learn something new. We show that our approach boosts top-1 accuracy over the state-of-the-art by 2-2.5% on CIFAR-100 and ImageNet datasets, while achieving comparable performance with fewer FLOPs to a larger network trained from scratch. Code is available at https://github.com/chaudatascience/mixturegrowth.
Abstract:Most neural networks assume that input images have a fixed number of channels (three for RGB images). However, there are many settings where the number of channels may vary, such as microscopy images where the number of channels changes depending on instruments and experimental goals. Yet, there has not been a systemic attempt to create and evaluate neural networks that are invariant to the number and type of channels. As a result, trained models remain specific to individual studies and are hardly reusable for other microscopy settings. In this paper, we present a benchmark for investigating channel-adaptive models in microscopy imaging, which consists of 1) a dataset of varied-channel single-cell images, and 2) a biologically relevant evaluation framework. In addition, we adapted several existing techniques to create channel-adaptive models and compared their performance on this benchmark to fixed-channel, baseline models. We find that channel-adaptive models can generalize better to out-of-domain tasks and can be computationally efficient. We contribute a curated dataset (https://doi.org/10.5281/zenodo.7988357) and an evaluation API (https://github.com/broadinstitute/MorphEm.git) to facilitate objective comparisons in future research and applications.
Abstract:This paper addresses the challenging problem of open-vocabulary object detection (OVOD) where an object detector must identify both seen and unseen classes in test images without labeled examples of the unseen classes in training. A typical approach for OVOD is to use joint text-image embeddings of CLIP to assign box proposals to their closest text label. However, this method has a critical issue: many low-quality boxes, such as over- and under-covered-object boxes, have the same similarity score as high-quality boxes since CLIP is not trained on exact object location information. To address this issue, we propose a novel method, LP-OVOD, that discards low-quality boxes by training a sigmoid linear classifier on pseudo labels retrieved from the top relevant region proposals to the novel text. Experimental results on COCO affirm the superior performance of our approach over the state of the art, achieving $\textbf{40.5}$ in $\text{AP}_{novel}$ using ResNet50 as the backbone and without external datasets or knowing novel classes during training. Our code will be available at https://github.com/VinAIResearch/LP-OVOD.
Abstract:Discussion and debate among Large Language Models (LLMs) have gained considerable attention due to their potential to enhance the reasoning ability of LLMs. Although natural language is an obvious choice for communication due to LLM's language understanding capability, the token sampling step needed when generating natural language poses a potential risk of information loss, as it uses only one token to represent the model's belief across the entire vocabulary. In this paper, we introduce a communication regime named CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue. Specifically, we remove the token sampling step from LLMs and let them communicate their beliefs across the vocabulary through the expectation of the raw transformer output embeddings. Remarkably, by deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights. While the state-of-the-art LLM debate methods using natural language outperforms traditional inference by a margin of 1.5-8%, our experiment results show that CIPHER debate further extends this lead by 1-3.5% across five reasoning tasks and multiple open-source LLMs of varying sizes. This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
Abstract:One of the most fundamental graph problems is finding a shortest path from a source to a target node. While in its basic forms the problem has been studied extensively and efficient algorithms are known, it becomes significantly harder as soon as parts of the graph are susceptible to failure. Although one can recompute a shortest replacement path after every outage, this is rather inefficient both in time and/or storage. One way to overcome this problem is to shift computational burden from the queries into a pre-processing step, where a data structure is computed that allows for fast querying of replacement paths, typically referred to as a Distance Sensitivity Oracle (DSO). While DSOs have been extensively studied in the theoretical computer science community, to the best of our knowledge this is the first work to construct DSOs using deep learning techniques. We show how to use deep learning to utilize a combinatorial structure of replacement paths. More specifically, we utilize the combinatorial structure of replacement paths as a concatenation of shortest paths and use deep learning to find the pivot nodes for stitching shortest paths into replacement paths.
Abstract:Persistence diagrams (PDs), often characterized as sets of death and birth of homology class, have been known for providing a topological representation of a graph structure, which is often useful in machine learning tasks. Prior works rely on a single graph signature to construct PDs. In this paper, we explore the use of a family of multi-scale graph signatures to enhance the robustness of topological features. We propose a deep learning architecture to handle this set input. Experiments on benchmark graph classification datasets demonstrate that our proposed architecture outperforms other persistent homology-based methods and achieves competitive performance compared to state-of-the-art methods using graph neural networks. In addition, our approach can be easily applied to large size of input graphs as it does not suffer from limited scalability which can be an issue for graph kernel methods.