Abstract:Incremental learning aims to adapt to new sets of categories over time with minimal computational overhead. Prior work often addresses this task by training efficient task-specific adaptors that modify frozen layer weights or features to capture relevant information without affecting predictions on previously learned categories. While these adaptors are generally more efficient than finetuning the entire network, they still require tens to hundreds of thousands of task-specific trainable parameters even for relatively small networks, making it challenging to operate on resource-constrained environments with high communication costs like edge devices or mobile phones. Thus, we propose Reparameterized, Compact weight Adaptation for Sequential Tasks (RECAST), a novel method that dramatically reduces task-specific trainable parameters to fewer than 50 - several orders of magnitude less than competing methods like LoRA. RECAST accomplishes this efficiency by learning to decompose layer weights into a soft parameter-sharing framework consisting of shared weight templates and very few module-specific scaling factors or coefficients. This soft parameter-sharing framework allows for effective task-wise reparameterization by tuning only these coefficients while keeping templates frozen.A key innovation of RECAST is the novel weight reconstruction pipeline called Neural Mimicry, which eliminates the need for pretraining from scratch. This allows for high-fidelity emulation of existing pretrained weights within our framework and provides quick adaptability to any model scale and architecture. Extensive experiments across six datasets demonstrate RECAST outperforms the state-of-the-art by up to 3% across various scales, architectures, and parameter spaces Moreover, we show that RECAST's architecture-agnostic nature allows for seamless integration with existing methods, further boosting performance.
Abstract:Learning never ends, and there is no age limit to grow yourself. However, the educational landscape may face challenges in effectively catering to students' inclusion and diverse learning needs. These students should have access to state-of-the-art methods for lecture delivery, online resources, and technology needs. However, with all the diverse learning sources, it becomes harder for students to comprehend a large amount of knowledge in a short period of time. Traditional assistive technologies and learning aids often lack the dynamic adaptability required for individualized education plans. Large Language Models (LLM) have been used in language translation, text summarization, and content generation applications. With rapid growth in AI over the past years, AI-powered chatbots and virtual assistants have been developed. This research aims to bridge this gap by introducing an innovative study buddy we will be calling the 'SAMCares'. The system leverages a Large Language Model (LLM) (in our case, LLaMa-2 70B as the base model) and Retriever-Augmented Generation (RAG) to offer real-time, context-aware, and adaptive educational support. The context of the model will be limited to the knowledge base of Sam Houston State University (SHSU) course notes. The LLM component enables a chat-like environment to interact with it to meet the unique learning requirements of each student. For this, we will build a custom web-based GUI. At the same time, RAG enhances real-time information retrieval and text generation, in turn providing more accurate and context-specific assistance. An option to upload additional study materials in the web GUI is added in case additional knowledge support is required. The system's efficacy will be evaluated through controlled trials and iterative feedback mechanisms.
Abstract:Communal violence in online forums has become extremely prevalent in South Asia, where many communities of different cultures coexist and share resources. These societies exhibit a phenomenon characterized by strong bonds within their own groups and animosity towards others, leading to conflicts that frequently escalate into violent confrontations. To address this issue, we have developed the first comprehensive framework for the automatic detection of communal violence markers in online Bangla content accompanying the largest collection (13K raw sentences) of social media interactions that fall under the definition of four major violence class and their 16 coarse expressions. Our workflow introduces a 7-step expert annotation process incorporating insights from social scientists, linguists, and psychologists. By presenting data statistics and benchmarking performance using this dataset, we have determined that, aside from the category of Non-communal violence, Religio-communal violence is particularly pervasive in Bangla text. Moreover, we have substantiated the effectiveness of fine-tuning language models in identifying violent comments by conducting preliminary benchmarking on the state-of-the-art Bangla deep learning model.
Abstract:Recently, significant progress has been made on Large Vision-Language Models (LVLMs); a new class of VL models that make use of large pre-trained language models. Yet, their vulnerability to Typographic attacks, which involve superimposing misleading text onto an image remain unstudied. Furthermore, prior work typographic attacks rely on sampling a random misleading class from a predefined set of classes. However, the random chosen class might not be the most effective attack. To address these issues, we first introduce a novel benchmark uniquely designed to test LVLMs vulnerability to typographic attacks. Furthermore, we introduce a new and more effective typographic attack: Self-Generated typographic attacks. Indeed, our method, given an image, make use of the strong language capabilities of models like GPT-4V by simply prompting them to recommend a typographic attack. Using our novel benchmark, we uncover that typographic attacks represent a significant threat against LVLM(s). Furthermore, we uncover that typographic attacks recommended by GPT-4V using our new method are not only more effective against GPT-4V itself compared to prior work attacks, but also against a host of less capable yet popular open source models like LLaVA, InstructBLIP, and MiniGPT4.
Abstract:We present OOD-Speech, the first out-of-distribution (OOD) benchmarking dataset for Bengali automatic speech recognition (ASR). Being one of the most spoken languages globally, Bengali portrays large diversity in dialects and prosodic features, which demands ASR frameworks to be robust towards distribution shifts. For example, islamic religious sermons in Bengali are delivered with a tonality that is significantly different from regular speech. Our training dataset is collected via massively online crowdsourcing campaigns which resulted in 1177.94 hours collected and curated from $22,645$ native Bengali speakers from South Asia. Our test dataset comprises 23.03 hours of speech collected and manually annotated from 17 different sources, e.g., Bengali TV drama, Audiobook, Talk show, Online class, and Islamic sermons to name a few. OOD-Speech is jointly the largest publicly available speech dataset, as well as the first out-of-distribution ASR benchmarking dataset for Bengali.
Abstract:Multi-class product counting and recognition identifies product items from images or videos for automated retail checkout. The task is challenging due to the real-world scenario of occlusions where product items overlap, fast movement in the conveyor belt, large similarity in overall appearance of the items being scanned, novel products, and the negative impact of misidentifying items. Further, there is a domain bias between training and test sets, specifically, the provided training dataset consists of synthetic images and the test set videos consist of foreign objects such as hands and tray. To address these aforementioned issues, we propose to segment and classify individual frames from a video sequence. The segmentation method consists of a unified single product item- and hand-segmentation followed by entropy masking to address the domain bias problem. The multi-class classification method is based on Vision Transformers (ViT). To identify the frames with target objects, we utilize several image processing methods and propose a custom metric to discard frames not having any product items. Combining all these mechanisms, our best system achieves 3rd place in the AI City Challenge 2022 Track 4 with an F1 score of 0.4545. Code will be available at
Abstract:Many areas, such as the biological and healthcare domain, artistic works, and organization names, have nested, overlapping, discontinuous entity mentions that may even be syntactically or semantically ambiguous in practice. Traditional sequence tagging algorithms are unable to recognize these complex mentions because they may violate the assumptions upon which sequence tagging schemes are founded. In this paper, we describe our contribution to SemEval 2022 Task 11 on identifying such complex Named Entities. We have leveraged the ensemble of multiple ELECTRA-based models that were exclusively pretrained on the Bangla language with the performance of ELECTRA-based models pretrained on English to achieve competitive performance on the Track-11. Besides providing a system description, we will also present the outcomes of our experiments on architectural decisions, dataset augmentations, and post-competition findings.