Facebook Research, New York, NY, USA
Abstract:Despite the abundant availability and content richness for video data, its high-dimensionality poses challenges for video research. Recent advancements have explored the implicit representation for videos using neural networks, demonstrating strong performance in applications such as video compression and enhancement. However, the prolonged encoding time remains a persistent challenge for video Implicit Neural Representations (INRs). In this paper, we focus on improving the speed of video encoding and decoding within implicit representations. We introduce two key components: NeRV-Enc, a transformer-based hyper-network for fast encoding; and NeRV-Dec, a parallel decoder for efficient video loading. NeRV-Enc achieves an impressive speed-up of $\mathbf{10^4\times}$ by eliminating gradient-based optimization. Meanwhile, NeRV-Dec simplifies video decoding, outperforming conventional codecs with a loading speed $\mathbf{11\times}$ faster, and surpassing RAM loading with pre-decoded videos ($\mathbf{2.5\times}$ faster while being $\mathbf{65\times}$ smaller in size).
Abstract:We present a novel frequency-based Self-Supervised Learning (SSL) approach that significantly enhances its efficacy for pre-training. Prior work in this direction masks out pre-defined frequencies in the input image and employs a reconstruction loss to pre-train the model. While achieving promising results, such an implementation has two fundamental limitations as identified in our paper. First, using pre-defined frequencies overlooks the variability of image frequency responses. Second, pre-trained with frequency-filtered images, the resulting model needs relatively more data to adapt to naturally looking images during fine-tuning. To address these drawbacks, we propose FOurier transform compression with seLf-Knowledge distillation (FOLK), integrating two dedicated ideas. First, inspired by image compression, we adaptively select the masked-out frequencies based on image frequency responses, creating more suitable SSL tasks for pre-training. Second, we employ a two-branch framework empowered by knowledge distillation, enabling the model to take both the filtered and original images as input, largely reducing the burden of downstream tasks. Our experimental results demonstrate the effectiveness of FOLK in achieving competitive performance to many state-of-the-art SSL methods across various downstream tasks, including image classification, few-shot learning, and semantic segmentation.
Abstract:In this paper, we introduce DetailCLIP: A Detail-Oriented CLIP to address the limitations of contrastive learning-based vision-language models, particularly CLIP, in handling detail-oriented and fine-grained tasks like segmentation. While CLIP and its variants excel in the global alignment of image and text representations, they often struggle to capture the fine-grained details necessary for precise segmentation. To overcome these challenges, we propose a novel framework that employs patch-level comparison of self-distillation and pixel-level reconstruction losses, enhanced with an attention-based token removal mechanism. This approach selectively retains semantically relevant tokens, enabling the model to focus on the image's critical regions aligned with the specific functions of our model, including textual information processing, patch comparison, and image reconstruction, ensuring that the model learns high-level semantics and detailed visual features. Our experiments demonstrate that DetailCLIP surpasses existing CLIP-based and traditional self-supervised learning (SSL) models in segmentation accuracy and exhibits superior generalization across diverse datasets. DetailCLIP represents a significant advancement in vision-language modeling, offering a robust solution for tasks that demand high-level semantic understanding and detailed feature extraction. https://github.com/KishoreP1/DetailCLIP.
Abstract:Illustration is a fundamental mode of human expression and communication. Certain types of motion that accompany speech can provide this illustrative mode of communication. While Augmented and Virtual Reality technologies (AR/VR) have introduced tools for producing drawings with hand motions (air drawing), they typically require costly hardware and additional digital markers, thereby limiting their accessibility and portability. Furthermore, air drawing demands considerable skill to achieve aesthetic results. To address these challenges, we introduce the concept of AirSketch, aimed at generating faithful and visually coherent sketches directly from hand motions, eliminating the need for complicated headsets or markers. We devise a simple augmentation-based self-supervised training procedure, enabling a controllable image diffusion model to learn to translate from highly noisy hand tracking images to clean, aesthetically pleasing sketches, while preserving the essential visual cues from the original tracking data. We present two air drawing datasets to study this problem. Our findings demonstrate that beyond producing photo-realistic images from precise spatial inputs, controllable image diffusion can effectively produce a refined, clear sketch from a noisy input. Our work serves as an initial step towards marker-less air drawing and reveals distinct applications of controllable diffusion models to AirSketch and AR/VR in general.
Abstract:We study the visual semantic embedding problem for image-text matching. Most existing work utilizes a tailored cross-attention mechanism to perform local alignment across the two image and text modalities. This is computationally expensive, even though it is more powerful than the unimodal dual-encoder approach. This work introduces a dual-encoder image-text matching model, leveraging a scene graph to represent captions with nodes for objects and attributes interconnected by relational edges. Utilizing a graph attention network, our model efficiently encodes object-attribute and object-object semantic relations, resulting in a robust and fast-performing system. Representing caption as a scene graph offers the ability to utilize the strong relational inductive bias of graph neural networks to learn object-attribute and object-object relations effectively. To train the model, we propose losses that align the image and caption both at the holistic level (image-caption) and the local level (image-object entity), which we show is key to the success of the model. Our model is termed Composition model for Object Relations and Attributes, CORA. Experimental results on two prominent image-text retrieval benchmarks, Flickr30K and MSCOCO, demonstrate that CORA outperforms existing state-of-the-art computationally expensive cross-attention methods regarding recall score while achieving fast computation speed of the dual encoder.
Abstract:Composed Image Retrieval (CIR) is a complex task that retrieves images using a query, which is configured with an image and a caption that describes desired modifications to that image. Supervised CIR approaches have shown strong performance, but their reliance on expensive manually-annotated datasets restricts their scalability and broader applicability. To address these issues, previous studies have proposed pseudo-word token-based Zero-Shot CIR (ZS-CIR) methods, which utilize a projection module to map images to word tokens. However, we conjecture that this approach has a downside: the projection module distorts the original image representation and confines the resulting composed embeddings to the text-side. In order to resolve this, we introduce a novel ZS-CIR method that uses Spherical Linear Interpolation (Slerp) to directly merge image and text representations by identifying an intermediate embedding of both. Furthermore, we introduce Text-Anchored-Tuning (TAT), a method that fine-tunes the image encoder while keeping the text encoder fixed. TAT closes the modality gap between images and text, making the Slerp process much more effective. Notably, the TAT method is not only efficient in terms of the scale of the training dataset and training time, but it also serves as an excellent initial checkpoint for training supervised CIR models, thereby highlighting its wider potential. The integration of the Slerp-based ZS-CIR with a TAT-tuned model enables our approach to deliver state-of-the-art retrieval performance across CIR benchmarks.
Abstract:Composed Image Retrieval (CIR) is a task that retrieves images similar to a query, based on a provided textual modification. Current techniques rely on supervised learning for CIR models using labeled triplets of the reference image, text, target image. These specific triplets are not as commonly available as simple image-text pairs, limiting the widespread use of CIR and its scalability. On the other hand, zero-shot CIR can be relatively easily trained with image-caption pairs without considering the image-to-image relation, but this approach tends to yield lower accuracy. We propose a new semi-supervised CIR approach where we search for a reference and its related target images in auxiliary data and learn our large language model-based Visual Delta Generator (VDG) to generate text describing the visual difference (i.e., visual delta) between the two. VDG, equipped with fluent language knowledge and being model agnostic, can generate pseudo triplets to boost the performance of CIR models. Our approach significantly improves the existing supervised learning approaches and achieves state-of-the-art results on the CIR benchmarks.
Abstract:With the success of large language models (LLMs), integrating the vision model into LLMs to build vision-language foundation models has gained much more interest recently. However, existing LLM-based large multimodal models (e.g., Video-LLaMA, VideoChat) can only take in a limited number of frames for short video understanding. In this study, we mainly focus on designing an efficient and effective model for long-term video understanding. Instead of trying to process more frames simultaneously like most existing work, we propose to process videos in an online manner and store past video information in a memory bank. This allows our model to reference historical video content for long-term analysis without exceeding LLMs' context length constraints or GPU memory limits. Our memory bank can be seamlessly integrated into current multimodal LLMs in an off-the-shelf manner. We conduct extensive experiments on various video understanding tasks, such as long-video understanding, video question answering, and video captioning, and our model can achieve state-of-the-art performances across multiple datasets. Code available at https://boheumd.github.io/MA-LMM/.
Abstract:Mitigating hallucinations of Large Multi-modal Models(LMMs) is crucial to enhance their reliability for general-purpose assistants. This paper shows that such hallucinations of LMMs can be significantly exacerbated by preceding user-system dialogues. To precisely measure this, we first present an evaluation benchmark by extending popular multi-modal benchmark datasets with prepended hallucinatory dialogues generated by our novel Adversarial Question Generator, which can automatically generate image-related yet adversarial dialogues by adopting adversarial attacks on LMMs. On our benchmark, the zero-shot performance of state-of-the-art LMMs dropped significantly for both the VQA and Captioning tasks. Next, we further reveal this hallucination is mainly due to the prediction bias toward preceding dialogues rather than visual content. To reduce this bias, we propose Adversarial Instruction Tuning that robustly fine-tunes LMMs on augmented multi-modal instruction-following datasets with hallucinatory dialogues. Extensive experiments show that our proposed approach successfully reduces dialogue hallucination while maintaining or even improving performance.
Abstract:Recently, Pyramid Adversarial training (Herrmann et al., 2022) has been shown to be very effective for improving clean accuracy and distribution-shift robustness of vision transformers. However, due to the iterative nature of adversarial training, the technique is up to 7 times more expensive than standard training. To make the method more efficient, we propose Universal Pyramid Adversarial training, where we learn a single pyramid adversarial pattern shared across the whole dataset instead of the sample-wise patterns. With our proposed technique, we decrease the computational cost of Pyramid Adversarial training by up to 70% while retaining the majority of its benefit on clean performance and distribution-shift robustness. In addition, to the best of our knowledge, we are also the first to find that universal adversarial training can be leveraged to improve clean model performance.