Abstract:Temporal quality is a critical aspect of video generation, as it ensures consistent motion and realistic dynamics across frames. However, achieving high temporal coherence and diversity remains challenging. In this work, we explore temporal augmentation in video generation for the first time, and introduce FluxFlow for initial investigation, a strategy designed to enhance temporal quality. Operating at the data level, FluxFlow applies controlled temporal perturbations without requiring architectural modifications. Extensive experiments on UCF-101 and VBench benchmarks demonstrate that FluxFlow significantly improves temporal coherence and diversity across various video generation models, including U-Net, DiT, and AR-based architectures, while preserving spatial fidelity. These findings highlight the potential of temporal augmentation as a simple yet effective approach to advancing video generation quality.
Abstract:Recent advances in text-to-image generation have primarily relied on extensive datasets and parameter-heavy architectures. These requirements severely limit accessibility for researchers and practitioners who lack substantial computational resources. In this paper, we introduce \model, an efficient training paradigm for image generation models that uses knowledge distillation (KD) and Direct Preference Optimization (DPO). Drawing inspiration from the success of data KD techniques widely adopted in Multi-Modal Large Language Models (MLLMs), LightGen distills knowledge from state-of-the-art (SOTA) text-to-image models into a compact Masked Autoregressive (MAR) architecture with only $0.7B$ parameters. Using a compact synthetic dataset of just $2M$ high-quality images generated from varied captions, we demonstrate that data diversity significantly outweighs data volume in determining model performance. This strategy dramatically reduces computational demands and reduces pre-training time from potentially thousands of GPU-days to merely 88 GPU-days. Furthermore, to address the inherent shortcomings of synthetic data, particularly poor high-frequency details and spatial inaccuracies, we integrate the DPO technique that refines image fidelity and positional accuracy. Comprehensive experiments confirm that LightGen achieves image generation quality comparable to SOTA models while significantly reducing computational resources and expanding accessibility for resource-constrained environments. Code is available at https://github.com/XianfengWu01/LightGen
Abstract:Pansharpening aims to enhance remote sensing image (RSI) quality by merging high-resolution panchromatic (PAN) with multispectral (MS) images. However, prior techniques struggled to optimally fuse PAN and MS images for enhanced spatial and spectral information, due to a lack of a systematic framework capable of effectively coordinating their individual strengths. In response, we present the Cross Modulation Transformer (CMT), a pioneering method that modifies the attention mechanism. This approach utilizes a robust modulation technique from signal processing, integrating it into the attention mechanism's calculations. It dynamically tunes the weights of the carrier's value (V) matrix according to the modulator's features, thus resolving historical challenges and achieving a seamless integration of spatial and spectral attributes. Furthermore, considering that RSI exhibits large-scale features and edge details along with local textures, we crafted a hybrid loss function that combines Fourier and wavelet transforms to effectively capture these characteristics, thereby enhancing both spatial and spectral accuracy in pansharpening. Extensive experiments demonstrate our framework's superior performance over existing state-of-the-art methods. The code will be publicly available to encourage further research.