Abstract:Factor Analysis is about finding a low-rank plus sparse additive decomposition from a noisy estimate of the signal covariance matrix. In order to get such a decomposition, we formulate an optimization problem using the nuclear norm for the low-rank component, the $\ell_0$ norm for the sparse component, and the Kullback-Leibler divergence to control the residual in the sample covariance matrix. An alternating minimization algorithm is designed for the solution of the optimization problem. The effectiveness of the algorithm is verified via simulations on synthetic and real datasets.
Abstract:Given the potential applications of generating recipes from food images, this area has garnered significant attention from researchers in recent years. Existing works for recipe generation primarily utilize a two-stage training method, first generating ingredients and then obtaining instructions from both the image and ingredients. Large Multi-modal Models (LMMs), which have achieved notable success across a variety of vision and language tasks, shed light to generating both ingredients and instructions directly from images. Nevertheless, LMMs still face the common issue of hallucinations during recipe generation, leading to suboptimal performance. To tackle this, we propose a retrieval augmented large multimodal model for recipe generation. We first introduce Stochastic Diversified Retrieval Augmentation (SDRA) to retrieve recipes semantically related to the image from an existing datastore as a supplement, integrating them into the prompt to add diverse and rich context to the input image. Additionally, Self-Consistency Ensemble Voting mechanism is proposed to determine the most confident prediction recipes as the final output. It calculates the consistency among generated recipe candidates, which use different retrieval recipes as context for generation. Extensive experiments validate the effectiveness of our proposed method, which demonstrates state-of-the-art (SOTA) performance in recipe generation tasks on the Recipe1M dataset.
Abstract:As large language models (LLMs) continue to advance, instruction tuning has become critical for improving their ability to generate accurate and contextually appropriate responses. Although numerous instruction-tuning datasets have been developed to enhance LLM performance, selecting high-quality instruction data from large source datasets typically demands significant human effort. In this work, we introduce $\textbf{IterSelectTune}$, an efficient, cost-effective iterative training policy for selecting high-quality instruction data with no human involvement and limited reliance on GPT-4. By fine-tuning on approximately 20\% of the source data, our method consistently outperforms models fine-tuned on the full dataset across multiple benchmarks and public test datasets. These results highlight the effectiveness of our approach in enhancing LLM performance while reducing the computational resources required for instruction tuning.
Abstract:The area of spectral analysis has a traditional dichotomy between continuous spectra (spectral densities) which correspond to purely nondeterministic processes, and line spectra (Dirac impulses) which represent sinusoids. While the former case is important in the identification of discrete-time linear stochastic systems, the latter case is essential for the analysis and modeling of time series with notable applications in radar systems. In this paper, we develop a novel approach for line spectral estimation which combines ideas of Georgiou's filter banks (G-filters) and atomic norm minimization (ANM), a mainstream method for line spectral analysis in the last decade following the theory of compressed sensing. Such a combination is only possible because a Carath\'{e}odory--Fej\'{e}r-type decomposition is available for the covariance matrix of the filter output. The ANM problem can be characterized via semidefinite programming which can be solved efficiently. As a consequence, our optimization theory can be seen as a substantial generalization of the standard ANM for line spectral estimation. Moreover, our ANM approach with a G-filter has significant advantages over subspace methods because it can work with just one output vector and without \emph{a priori} knowledge about the number of sinusoids in the input. Simulation results show that our approach performs reasonably well under different signal-to-noise ratios when the G-filter is suitably designed.
Abstract:This paper proposes a novel approach for line spectral estimation which combines Georgiou's filter bank (G-filter) with atomic norm minimization (ANM). A key ingredient is a Carath\'{e}odory--Fej\'{e}r-type decomposition for the covariance matrix of the filter output. The resulting optimization problem can be characterized via semidefinite programming and contains the standard ANM for line spectral estimation as a special case. Simulations show that our approach outperforms the standard ANM in terms of recovering the number of spectral lines when the signal-to-noise ratio is no lower than 0 dB and the G-filter is suitably designed.
Abstract:Text-to-image generation models have achieved remarkable advancements in recent years, aiming to produce realistic images from textual descriptions. However, these models often struggle with generating anatomically accurate representations of human hands. The resulting images frequently exhibit issues such as incorrect numbers of fingers, unnatural twisting or interlacing of fingers, or blurred and indistinct hands. These issues stem from the inherent complexity of hand structures and the difficulty in aligning textual descriptions with precise visual depictions of hands. To address these challenges, we propose a novel approach named Hand1000 that enables the generation of realistic hand images with target gesture using only 1,000 training samples. The training of Hand1000 is divided into three stages with the first stage aiming to enhance the model's understanding of hand anatomy by using a pre-trained hand gesture recognition model to extract gesture representation. The second stage further optimizes text embedding by incorporating the extracted hand gesture representation, to improve alignment between the textual descriptions and the generated hand images. The third stage utilizes the optimized embedding to fine-tune the Stable Diffusion model to generate realistic hand images. In addition, we construct the first publicly available dataset specifically designed for text-to-hand image generation. Based on the existing hand gesture recognition dataset, we adopt advanced image captioning models and LLaMA3 to generate high-quality textual descriptions enriched with detailed gesture information. Extensive experiments demonstrate that Hand1000 significantly outperforms existing models in producing anatomically correct hand images while faithfully representing other details in the text, such as faces, clothing, and colors.
Abstract:Variational Autoencoder (VAE), compressing videos into latent representations, is a crucial preceding component of Latent Video Diffusion Models (LVDMs). With the same reconstruction quality, the more sufficient the VAE's compression for videos is, the more efficient the LVDMs are. However, most LVDMs utilize 2D image VAE, whose compression for videos is only in the spatial dimension and often ignored in the temporal dimension. How to conduct temporal compression for videos in a VAE to obtain more concise latent representations while promising accurate reconstruction is seldom explored. To fill this gap, we propose an omni-dimension compression VAE, named OD-VAE, which can temporally and spatially compress videos. Although OD-VAE's more sufficient compression brings a great challenge to video reconstruction, it can still achieve high reconstructed accuracy by our fine design. To obtain a better trade-off between video reconstruction quality and compression speed, four variants of OD-VAE are introduced and analyzed. In addition, a novel tail initialization is designed to train OD-VAE more efficiently, and a novel inference strategy is proposed to enable OD-VAE to handle videos of arbitrary length with limited GPU memory. Comprehensive experiments on video reconstruction and LVDM-based video generation demonstrate the effectiveness and efficiency of our proposed methods.
Abstract:Large Multi-modal Models (LMMs) have significantly advanced a variety of vision-language tasks. The scalability and availability of high-quality training data play a pivotal role in the success of LMMs. In the realm of food, while comprehensive food datasets such as Recipe1M offer an abundance of ingredient and recipe information, they often fall short of providing ample data for nutritional analysis. The Recipe1M+ dataset, despite offering a subset for nutritional evaluation, is limited in the scale and accuracy of nutrition information. To bridge this gap, we introduce Uni-Food, a unified food dataset that comprises over 100,000 images with various food labels, including categories, ingredients, recipes, and ingredient-level nutritional information. Uni-Food is designed to provide a more holistic approach to food data analysis, thereby enhancing the performance and capabilities of LMMs in this domain. To mitigate the conflicts arising from multi-task supervision during fine-tuning of LMMs, we introduce a novel Linear Rectification Mixture of Diverse Experts (RoDE) approach. RoDE utilizes a diverse array of experts to address tasks of varying complexity, thereby facilitating the coordination of trainable parameters, i.e., it allocates more parameters for more complex tasks and, conversely, fewer parameters for simpler tasks. RoDE implements linear rectification union to refine the router's functionality, thereby enhancing the efficiency of sparse task allocation. These design choices endow RoDE with features that ensure GPU memory efficiency and ease of optimization. Our experimental results validate the effectiveness of our proposed approach in addressing the inherent challenges of food-related multitasking.
Abstract:Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications. Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space. To alleviate these issues, leveraging on diffusion models' remarkable synthesis capabilities, we propose Diffusion-based Model Inversion (Diff-MI) attacks. Specifically, we introduce a novel target-specific conditional diffusion model (CDM) to purposely approximate target classifier's private distribution and achieve superior accuracy-fidelity balance. Our method involves a two-step learning paradigm. Step-1 incorporates the target classifier into the entire CDM learning under a pretrain-then-finetune fashion, with creating pseudo-labels as model conditions in pretraining and adjusting specified layers with image predictions in fine-tuning. Step-2 presents an iterative image reconstruction method, further enhancing the attack performance through a combination of diffusion priors and target knowledge. Additionally, we propose an improved max-margin loss that replaces the hard max with top-k maxes, fully leveraging feature information and soft labels from the target classifier. Extensive experiments demonstrate that Diff-MI significantly improves generative fidelity with an average decrease of 20% in FID while maintaining competitive attack accuracy compared to state-of-the-art methods across various datasets and models. We will release our code and models.
Abstract:In the domain of 3D scene representation, 3D Gaussian Splatting (3DGS) has emerged as a pivotal technology. However, its application to large-scale, high-resolution scenes (exceeding 4k$\times$4k pixels) is hindered by the excessive computational requirements for managing a large number of Gaussians. Addressing this, we introduce 'EfficientGS', an advanced approach that optimizes 3DGS for high-resolution, large-scale scenes. We analyze the densification process in 3DGS and identify areas of Gaussian over-proliferation. We propose a selective strategy, limiting Gaussian increase to key primitives, thereby enhancing the representational efficiency. Additionally, we develop a pruning mechanism to remove redundant Gaussians, those that are merely auxiliary to adjacent ones. For further enhancement, we integrate a sparse order increment for Spherical Harmonics (SH), designed to alleviate storage constraints and reduce training overhead. Our empirical evaluations, conducted on a range of datasets including extensive 4K+ aerial images, demonstrate that 'EfficientGS' not only expedites training and rendering times but also achieves this with a model size approximately tenfold smaller than conventional 3DGS while maintaining high rendering fidelity.