Abstract:Variable selection plays a crucial role in enhancing modeling effectiveness across diverse fields, addressing the challenges posed by high-dimensional datasets of correlated variables. This work introduces a novel approach namely Knockoff with over-parameterization (Knoop) to enhance Knockoff filters for variable selection. Specifically, Knoop first generates multiple knockoff variables for each original variable and integrates them with the original variables into an over-parameterized Ridgeless regression model. For each original variable, Knoop evaluates the coefficient distribution of its knockoffs and compares these with the original coefficients to conduct an anomaly-based significance test, ensuring robust variable selection. Extensive experiments demonstrate superior performance compared to existing methods in both simulation and real-world datasets. Knoop achieves a notably higher Area under the Curve (AUC) of the Receiver Operating Characteristic (ROC) Curve for effectively identifying relevant variables against the ground truth by controlled simulations, while showcasing enhanced predictive accuracy across diverse regression and classification tasks. The analytical results further backup our observations.
Abstract:The paper introduces EICopilot, an novel agent-based solution enhancing search and exploration of enterprise registration data within extensive online knowledge graphs like those detailing legal entities, registered capital, and major shareholders. Traditional methods necessitate text-based queries and manual subgraph explorations, often resulting in time-consuming processes. EICopilot, deployed as a chatbot via Baidu Enterprise Search, improves this landscape by utilizing Large Language Models (LLMs) to interpret natural language queries. This solution automatically generates and executes Gremlin scripts, providing efficient summaries of complex enterprise relationships. Distinct feature a data pre-processing pipeline that compiles and annotates representative queries into a vector database of examples for In-context learning (ICL), a comprehensive reasoning pipeline combining Chain-of-Thought with ICL to enhance Gremlin script generation for knowledge graph search and exploration, and a novel query masking strategy that improves intent recognition for heightened script accuracy. Empirical evaluations demonstrate the superior performance of EICopilot, including speed and accuracy, over baseline methods, with the \emph{Full Mask} variant achieving a syntax error rate reduction to as low as 10.00% and an execution correctness of up to 82.14%. These components collectively contribute to superior querying capabilities and summarization of intricate datasets, positioning EICopilot as a groundbreaking tool in the exploration and exploitation of large-scale knowledge graphs for enterprise information search.
Abstract:Diffusion models, the most popular generative paradigm so far, can inject conditional information into the generation path to guide the latent towards desired directions. However, existing text-to-image diffusion models often fail to maintain high image quality and high prompt-image alignment for those challenging prompts. To mitigate this issue and enhance existing pretrained diffusion models, we mainly made three contributions in this paper. First, we propose diffusion self-reflection that alternately performs denoising and inversion and demonstrate that such diffusion self-reflection can leverage the guidance gap between denoising and inversion to capture prompt-related semantic information with theoretical and empirical evidence. Second, motivated by theoretical analysis, we derive Zigzag Diffusion Sampling (Z-Sampling), a novel self-reflection-based diffusion sampling method that leverages the guidance gap between denosing and inversion to accumulate semantic information step by step along the sampling path, leading to improved sampling results. Moreover, as a plug-and-play method, Z-Sampling can be generally applied to various diffusion models (e.g., accelerated ones and Transformer-based ones) with very limited coding and computational costs. Third, our extensive experiments demonstrate that Z-Sampling can generally and significantly enhance generation quality across various benchmark datasets, diffusion models, and performance evaluation metrics. For example, DreamShaper with Z-Sampling can self-improve with the HPSv2 winning rate up to 94% over the original results. Moreover, Z-Sampling can further enhance existing diffusion models combined with other orthogonal methods, including Diffusion-DPO.
Abstract:Large diffusion models have become mainstream generative models in both academic studies and industrial AIGC applications. Recently, a number of works further explored how to employ the power of large diffusion models as zero-shot classifiers. While recent zero-shot diffusion-based classifiers have made performance advancement on benchmark datasets, they still suffered badly from extremely slow classification speed (e.g., ~1000 seconds per classifying single image on ImageNet). The extremely slow classification speed strongly prohibits existing zero-shot diffusion-based classifiers from practical applications. In this paper, we propose an embarrassingly simple and efficient zero-shot Gaussian Diffusion Classifiers (GDC) via pretrained text-to-image diffusion models and DINOv2. The proposed GDC can not only significantly surpass previous zero-shot diffusion-based classifiers by over 10 points (61.40% - 71.44%) on ImageNet, but also accelerate more than 30000 times (1000 - 0.03 seconds) classifying a single image on ImageNet. Additionally, it provides probability interpretation of the results. Our extensive experiments further demonstrate that GDC can achieve highly competitive zero-shot classification performance over various datasets and can promisingly self-improve with stronger diffusion models. To the best of our knowledge, the proposed GDC is the first zero-shot diffusionbased classifier that exhibits both competitive accuracy and practical efficiency.
Abstract:Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, researchers have introduced graph neural networks with graph-based molecular representations, such as GEM, incorporating the topology, geometry, 2D or even 3D structures of molecules into pre-training. While most of molecular graphs in existing studies were automatically converted from SMILES sequences, it is to assume that transformer-based language models might be able to implicitly learn structure-aware representations from SMILES sequences. In this paper, we propose \ours{} -- a SMILES-based \underline{\em M}olecular \underline{\em L}anguage \underline{\em M}odel, which randomly masking SMILES subsequences corresponding to specific molecular \underline{\em F}unctional \underline{\em G}roups to incorporate structure information of atoms during the pre-training phase. This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities. Extensive experimental evaluations across 11 benchmark classification and regression tasks in the chemical domain demonstrate the robustness and superiority of \ours{}. Our findings reveal that \ours{} outperforms existing pre-training models, either based on SMILES or graphs, in 9 out of the 11 downstream tasks, ranking as a close second in the remaining ones.
Abstract:Both Transformer and Graph Neural Networks (GNNs) have been employed in the domain of learning to rank (LTR). However, these approaches adhere to two distinct yet complementary problem formulations: ranking score regression based on query-webpage pairs, and link prediction within query-webpage bipartite graphs, respectively. While it is possible to pre-train GNNs or Transformers on source datasets and subsequently fine-tune them on sparsely annotated LTR datasets, the distributional shifts between the pair-based and bipartite graph domains present significant challenges in integrating these heterogeneous models into a unified LTR framework at web scale. To address this, we introduce the novel MPGraf model, which leverages a modular and capsule-based pre-training strategy, aiming to cohesively integrate the regression capabilities of Transformers with the link prediction strengths of GNNs. We conduct extensive offline and online experiments to rigorously evaluate the performance of MPGraf.
Abstract:Learning to rank (LTR) is widely employed in web searches to prioritize pertinent webpages from retrieved content based on input queries. However, traditional LTR models encounter two principal obstacles that lead to suboptimal performance: (1) the lack of well-annotated query-webpage pairs with ranking scores covering a diverse range of search query popularities, which hampers their ability to address queries across the popularity spectrum, and (2) inadequately trained models that fail to induce generalized representations for LTR, resulting in overfitting. To address these challenges, we propose a \emph{\uline{G}enerative \uline{S}emi-\uline{S}upervised \uline{P}re-trained} (GS2P) LTR model. We conduct extensive offline experiments on both a publicly available dataset and a real-world dataset collected from a large-scale search engine. Furthermore, we deploy GS2P in a large-scale web search engine with realistic traffic, where we observe significant improvements in the real-world application.
Abstract:Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions, generating outputs that may not match text prompts or possess desired properties. Inspired by the success of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
Abstract:While the field of NL2SQL has made significant advancements in translating natural language instructions into executable SQL scripts for data querying and processing, achieving full automation within the broader data science pipeline - encompassing data querying, analysis, visualization, and reporting - remains a complex challenge. This study introduces SageCopilot, an advanced, industry-grade system system that automates the data science pipeline by integrating Large Language Models (LLMs), Autonomous Agents (AutoAgents), and Language User Interfaces (LUIs). Specifically, SageCopilot incorporates a two-phase design: an online component refining users' inputs into executable scripts through In-Context Learning (ICL) and running the scripts for results reporting & visualization, and an offline preparing demonstrations requested by ICL in the online phase. A list of trending strategies such as Chain-of-Thought and prompt-tuning have been used to augment SageCopilot for enhanced performance. Through rigorous testing and comparative analysis against prompt-based solutions, SageCopilot has been empirically validated to achieve superior end-to-end performance in generating or executing scripts and offering results with visualization, backed by real-world datasets. Our in-depth ablation studies highlight the individual contributions of various components and strategies used by SageCopilot to the end-to-end correctness for data sciences.
Abstract:Diffusion models that can generate high-quality data from randomly sampled Gaussian noises have become the mainstream generative method in both academia and industry. Are randomly sampled Gaussian noises equally good for diffusion models? While a large body of works tried to understand and improve diffusion models, previous works overlooked the possibility to select or optimize the sampled noise the possibility of selecting or optimizing sampled noises for improving diffusion models. In this paper, we mainly made three contributions. First, we report that not all noises are created equally for diffusion models. We are the first to hypothesize and empirically observe that the generation quality of diffusion models significantly depend on the noise inversion stability. This naturally provides us a noise selection method according to the inversion stability. Second, we further propose a novel noise optimization method that actively enhances the inversion stability of arbitrary given noises. Our method is the first one that works on noise space to generally improve generated results without fine-tuning diffusion models. Third, our extensive experiments demonstrate that the proposed noise selection and noise optimization methods both significantly improve representative diffusion models, such as SDXL and SDXL-turbo, in terms of human preference and other objective evaluation metrics. For example, the human preference winning rates of noise selection and noise optimization over the baselines can be up to 57% and 72.5%, respectively, on DrawBench.