Abstract:Large diffusion models have become mainstream generative models in both academic studies and industrial AIGC applications. Recently, a number of works further explored how to employ the power of large diffusion models as zero-shot classifiers. While recent zero-shot diffusion-based classifiers have made performance advancement on benchmark datasets, they still suffered badly from extremely slow classification speed (e.g., ~1000 seconds per classifying single image on ImageNet). The extremely slow classification speed strongly prohibits existing zero-shot diffusion-based classifiers from practical applications. In this paper, we propose an embarrassingly simple and efficient zero-shot Gaussian Diffusion Classifiers (GDC) via pretrained text-to-image diffusion models and DINOv2. The proposed GDC can not only significantly surpass previous zero-shot diffusion-based classifiers by over 10 points (61.40% - 71.44%) on ImageNet, but also accelerate more than 30000 times (1000 - 0.03 seconds) classifying a single image on ImageNet. Additionally, it provides probability interpretation of the results. Our extensive experiments further demonstrate that GDC can achieve highly competitive zero-shot classification performance over various datasets and can promisingly self-improve with stronger diffusion models. To the best of our knowledge, the proposed GDC is the first zero-shot diffusionbased classifier that exhibits both competitive accuracy and practical efficiency.
Abstract:Diffusion models, the most popular generative paradigm so far, can inject conditional information into the generation path to guide the latent towards desired directions. However, existing text-to-image diffusion models often fail to maintain high image quality and high prompt-image alignment for those challenging prompts. To mitigate this issue and enhance existing pretrained diffusion models, we mainly made three contributions in this paper. First, we propose diffusion self-reflection that alternately performs denoising and inversion and demonstrate that such diffusion self-reflection can leverage the guidance gap between denoising and inversion to capture prompt-related semantic information with theoretical and empirical evidence. Second, motivated by theoretical analysis, we derive Zigzag Diffusion Sampling (Z-Sampling), a novel self-reflection-based diffusion sampling method that leverages the guidance gap between denosing and inversion to accumulate semantic information step by step along the sampling path, leading to improved sampling results. Moreover, as a plug-and-play method, Z-Sampling can be generally applied to various diffusion models (e.g., accelerated ones and Transformer-based ones) with very limited coding and computational costs. Third, our extensive experiments demonstrate that Z-Sampling can generally and significantly enhance generation quality across various benchmark datasets, diffusion models, and performance evaluation metrics. For example, DreamShaper with Z-Sampling can self-improve with the HPSv2 winning rate up to 94% over the original results. Moreover, Z-Sampling can further enhance existing diffusion models combined with other orthogonal methods, including Diffusion-DPO.
Abstract:Text-to-image diffusion models (DMs) develop at an unprecedented pace, supported by thorough theoretical exploration and empirical analysis. Unfortunately, the discrepancy between DMs and autoregressive models (ARMs) complicates the path toward achieving the goal of unified vision and language generation. Recently, the masked generative Transformer (MGT) serves as a promising intermediary between DM and ARM by predicting randomly masked image tokens (i.e., masked image modeling), combining the efficiency of DM with the discrete token nature of ARM. However, we find that the comprehensive analyses regarding the inference for MGT are virtually non-existent, and thus we aim to present positive design choices to fill this gap. We modify and re-design a set of DM-based inference techniques for MGT and further elucidate their performance on MGT. We also discuss the approach to correcting token's distribution to enhance inference. Extensive experiments and empirical analyses lead to concrete and effective design choices, and these design choices can be merged to achieve further performance gains. For instance, in terms of enhanced inference, we achieve winning rates of approximately 70% compared to vanilla sampling on HPS v2 with the recent SOTA MGT Meissonic. Our contributions have the potential to further enhance the capabilities and future development of MGTs.
Abstract:Text-to-image diffusion model is a popular paradigm that synthesizes personalized images by providing a text prompt and a random Gaussian noise. While people observe that some noises are ``golden noises'' that can achieve better text-image alignment and higher human preference than others, we still lack a machine learning framework to obtain those golden noises. To learn golden noises for diffusion sampling, we mainly make three contributions in this paper. First, we identify a new concept termed the \textit{noise prompt}, which aims at turning a random Gaussian noise into a golden noise by adding a small desirable perturbation derived from the text prompt. Following the concept, we first formulate the \textit{noise prompt learning} framework that systematically learns ``prompted'' golden noise associated with a text prompt for diffusion models. Second, we design a noise prompt data collection pipeline and collect a large-scale \textit{noise prompt dataset}~(NPD) that contains 100k pairs of random noises and golden noises with the associated text prompts. With the prepared NPD as the training dataset, we trained a small \textit{noise prompt network}~(NPNet) that can directly learn to transform a random noise into a golden noise. The learned golden noise perturbation can be considered as a kind of prompt for noise, as it is rich in semantic information and tailored to the given text prompt. Third, our extensive experiments demonstrate the impressive effectiveness and generalization of NPNet on improving the quality of synthesized images across various diffusion models, including SDXL, DreamShaper-xl-v2-turbo, and Hunyuan-DiT. Moreover, NPNet is a small and efficient controller that acts as a plug-and-play module with very limited additional inference and computational costs, as it just provides a golden noise instead of a random noise without accessing the original pipeline.
Abstract:Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, researchers have introduced graph neural networks with graph-based molecular representations, such as GEM, incorporating the topology, geometry, 2D or even 3D structures of molecules into pre-training. While most of molecular graphs in existing studies were automatically converted from SMILES sequences, it is to assume that transformer-based language models might be able to implicitly learn structure-aware representations from SMILES sequences. In this paper, we propose \ours{} -- a SMILES-based \underline{\em M}olecular \underline{\em L}anguage \underline{\em M}odel, which randomly masking SMILES subsequences corresponding to specific molecular \underline{\em F}unctional \underline{\em G}roups to incorporate structure information of atoms during the pre-training phase. This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities. Extensive experimental evaluations across 11 benchmark classification and regression tasks in the chemical domain demonstrate the robustness and superiority of \ours{}. Our findings reveal that \ours{} outperforms existing pre-training models, either based on SMILES or graphs, in 9 out of the 11 downstream tasks, ranking as a close second in the remaining ones.
Abstract:The multi-step sampling mechanism, a key feature of visual diffusion models, has significant potential to replicate the success of OpenAI's Strawberry in enhancing performance by increasing the inference computational cost. Sufficient prior studies have demonstrated that correctly scaling up computation in the sampling process can successfully lead to improved generation quality, enhanced image editing, and compositional generalization. While there have been rapid advancements in developing inference-heavy algorithms for improved image generation, relatively little work has explored inference scaling laws in video diffusion models (VDMs). Furthermore, existing research shows only minimal performance gains that are perceptible to the naked eye. To address this, we design a novel training-free algorithm IV-Mixed Sampler that leverages the strengths of image diffusion models (IDMs) to assist VDMs surpass their current capabilities. The core of IV-Mixed Sampler is to use IDMs to significantly enhance the quality of each video frame and VDMs ensure the temporal coherence of the video during the sampling process. Our experiments have demonstrated that IV-Mixed Sampler achieves state-of-the-art performance on 4 benchmarks including UCF-101-FVD, MSR-VTT-FVD, Chronomagic-Bench-150, and Chronomagic-Bench-1649. For example, the open-source Animatediff with IV-Mixed Sampler reduces the UMT-FVD score from 275.2 to 228.6, closing to 223.1 from the closed-source Pika-2.0.
Abstract:Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions, generating outputs that may not match text prompts or possess desired properties. Inspired by the success of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
Abstract:The influence function, a technique from robust statistics, measures the impact on model parameters or related functions when training data is removed or modified. This effective and valuable post-hoc method allows for studying the interpretability of machine learning models without requiring costly model retraining. It would provide extensions like increasing model performance, improving model generalization, and offering interpretability. Recently, Multivariate Time Series (MTS) analysis has become an important yet challenging task, attracting significant attention. However, there is no preceding research on the influence functions of MTS to shed light on the effects of modifying the channel of training MTS. Given that each channel in an MTS plays a crucial role in its analysis, it is essential to characterize the influence of different channels. To fill this gap, we propose a channel-wise influence function, which is the first method that can estimate the influence of different channels in MTS, utilizing a first-order gradient approximation that leverages the more informative average gradient of the data set. Additionally, we demonstrate how this influence function can be used to estimate the impact of a channel in MTS. Finally, we validated the accuracy and effectiveness of our influence estimation function in critical MTS analysis tasks, such as MTS anomaly detection and MTS forecasting. According to abundant experiments on real-world dataset, the original influence function performs worse than our method and even fail for the channel pruning problem, which demonstrate the superiority and necessity of channel-wise influence function in MTS analysis tasks.
Abstract:This article explores the convergence of connectionist and symbolic artificial intelligence (AI), from historical debates to contemporary advancements. Traditionally considered distinct paradigms, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic. Recent advancements in large language models (LLMs), exemplified by ChatGPT and GPT-4, highlight the potential of connectionist architectures in handling human language as a form of symbols. The study argues that LLM-empowered Autonomous Agents (LAAs) embody this paradigm convergence. By utilizing LLMs for text-based knowledge modeling and representation, LAAs integrate neuro-symbolic AI principles, showcasing enhanced reasoning and decision-making capabilities. Comparing LAAs with Knowledge Graphs within the neuro-symbolic AI theme highlights the unique strengths of LAAs in mimicking human-like reasoning processes, scaling effectively with large datasets, and leveraging in-context samples without explicit re-training. The research underscores promising avenues in neuro-vector-symbolic integration, instructional encoding, and implicit reasoning, aimed at further enhancing LAA capabilities. By exploring the progression of neuro-symbolic AI and proposing future research trajectories, this work advances the understanding and development of AI technologies.
Abstract:In this paper, we focus on resolving the problem of image outpainting, which aims to extrapolate the surrounding parts given the center contents of an image. Although recent works have achieved promising performance, the lack of versatility and customization hinders their practical applications in broader scenarios. Therefore, this work presents a novel image outpainting framework that is capable of customizing the results according to the requirement of users. First of all, we take advantage of a Multimodal Large Language Model (MLLM) that automatically extracts and organizes the corresponding textual descriptions of the masked and unmasked part of a given image. Accordingly, the obtained text prompts are introduced to endow our model with the capacity to customize the outpainting results. In addition, a special Cross-Attention module, namely Center-Total-Surrounding (CTS), is elaborately designed to enhance further the the interaction between specific space regions of the image and corresponding parts of the text prompts. Note that unlike most existing methods, our approach is very resource-efficient since it is just slightly fine-tuned on the off-the-shelf stable diffusion (SD) model rather than being trained from scratch. Finally, the experimental results on three commonly used datasets, i.e. Scenery, Building, and WikiArt, demonstrate our model significantly surpasses the SoTA methods. Moreover, versatile outpainting results are listed to show its customized ability.